Abstract
Exploiting carbonic anhydrase (CA), an enzyme that catalyzes the hydration of CO2, is a powerful route for eco-friendly and cost-effective carbon capture and utilization. For successful industrial applications, the stability and reusability of CA should be improved, which necessitates enzyme immobilization. Herein, the ribosomal protein L2 (Si-tag) from Escherichia coli was utilized for the immobilization of CA onto diatom biosilica, a promising renewable support material. The Si-tag was redesigned (L2NC) and genetically fused to CA from the marine bacterium Hydrogenovibrio marinus (hmCA). One-step self-immobilization of hmCA-L2NC onto diatom biosilica by simple mixing was successfully achieved via Si-tag-mediated strong binding, showing multilayer adsorption with a maximal loading of 1.4 wt %. The immobilized enzyme showed high reusability and no enzyme leakage even under high temperature conditions. The activity of hmCA-L2NC was inversely proportional to the enzyme loading, while the stability was directly proportional to the enzyme loading. This discovered activity-stability trade-off phenomenon could be attributed to macromolecular crowding on the highly dense surface of the enzyme-immobilized biosilica. Collectively, our system not only facilitates the stability-controllable self-immobilization of enzyme via Si-tag on a diatom biosilica support for the robust, facile, and green construction of stable biocatalysts, but is also a unique model for studying the macromolecular crowding effect on surface-immobilized enzymes.
| Original language | English |
|---|---|
| Pages (from-to) | 27055-27063 |
| Number of pages | 9 |
| Journal | ACS Applied Materials and Interfaces |
| Volume | 12 |
| Issue number | 24 |
| DOIs | |
| State | Published - 17 Jun 2020 |
Bibliographical note
Publisher Copyright:Copyright © 2020 American Chemical Society.
Keywords
- Hydrogenovibrio marinus
- biosilica
- carbonic anhydrase
- enzyme immobilization
- macromolecular crowding
- silica-binding tag