SPM-BP: Sped-up patchmatch belief propagation for continuous MRFs

Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

78 Scopus citations

Abstract

Markov random fields are widely used to model many computer vision problems that can be cast in an energy minimization framework composed of unary and pairwise potentials. While computationally tractable discrete optimizers such as Graph Cuts and belief propagation (BP) exist for multi-label discrete problems, they still face prohibitively high computational challenges when the labels reside in a huge or very densely sampled space. Integrating key ideas from PatchMatch of effective particle propagation and resampling, PatchMatch belief propagation (PMBP) has been demonstrated to have good performance in addressing continuous labeling problems and runs orders of magnitude faster than Particle BP (PBP). However, the quality of the PMBP solution is tightly coupled with the local window size, over which the raw data cost is aggregated to mitigate ambiguity in the data constraint. This dependency heavily influences the overall complexity, increasing linearly with the window size. This paper proposes a novel algorithm called sped-up PMBP (SPM-BP) to tackle this critical computational bottleneck and speeds up PMBP by 50-100 times. The crux of SPM-BP is on unifying efficient filter-based cost aggregation and message passing with PatchMatch-based particle generation in a highly effective way. Though simple in its formulation, SPM-BP achieves superior performance for sub-pixel accurate stereo and optical-flow on benchmark datasets when compared with more complex and task-specific approaches.

Original languageEnglish
Title of host publication2015 International Conference on Computer Vision, ICCV 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4006-4014
Number of pages9
ISBN (Electronic)9781467383912
DOIs
StatePublished - 17 Feb 2015
Event15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile
Duration: 11 Dec 201518 Dec 2015

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2015 International Conference on Computer Vision, ICCV 2015
ISSN (Print)1550-5499

Conference

Conference15th IEEE International Conference on Computer Vision, ICCV 2015
Country/TerritoryChile
CitySantiago
Period11/12/1518/12/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

Fingerprint

Dive into the research topics of 'SPM-BP: Sped-up patchmatch belief propagation for continuous MRFs'. Together they form a unique fingerprint.

Cite this