Abstract
While valley polarization with strong Zeeman splitting is the most prominent characteristic of two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors under magnetic fields, enhancement of the Zeeman splitting has been demonstrated by incorporating magnetic dopants into the host materials. Unlike Fe, Mn, and Co, V is a distinctive dopant for ferromagnetic semiconducting properties at room temperature with large Zeeman shifting of band edges. Nevertheless, little known is the excitons interacting with spin-polarized carriers in V-doped TMDs. Here, we report anomalous circularly polarized photoluminescence (CPL) in a V-doped WSe2 monolayer at room temperature. Excitons couple to V-induced spin-polarized holes to generate spin-selective positive trions, leading to differences in the populations of neutral excitons and trions between left and right CPL. Using transient absorption spectroscopy, we elucidate the origin of excitons and trions that are inherently distinct for defect-mediated and impurity-mediated trions. Ferromagnetic characteristics are further confirmed by the significant Zeeman splitting of nanodiamonds deposited on the V-doped WSe2 monolayer.
Original language | English |
---|---|
Pages (from-to) | 20267-20277 |
Number of pages | 11 |
Journal | ACS Nano |
Volume | 15 |
Issue number | 12 |
DOIs | |
State | Published - 28 Dec 2021 |
Bibliographical note
Publisher Copyright:© 2021 American Chemical Society.
Keywords
- diluted ferromagnetic semiconductors
- excitons
- spin-valley coupling
- trions
- vdW materials