Abstract
Spin manipulation offers an effective strategy to enhance photocatalytic activity in metal halide perovskites by suppressing the recombination of photo-excited electrons. However, the scope of the magnetic dopant inducing spin polarization is still limited. Here, we introduce synergetic strategies to polarize the spin in photo-excited electrons and boost their photocatalytic activity for CO2 reduction. We dope iron cation (Fe2+) into CsPbBr3 perovskite nanocrystals (PNCs). Fe ions induce paramagnetism, fostering spin polarization within the Fe-doped CsPbBr3 PNCs (Fe-CsPbBr3 PNCs) under magnetic fields. The magnetic compositions in PNC tend to stabilize the spin polarized electrons within the PNC, mitigate the recombination of photo-excited electrons and enhance the redox reaction for photocatalytic CO2 reduction. The synergistic effects of magnetic element doping and the application of magnetic fields resulted in a photocatalytic CO2 reduction of 133.04 μmol g−1, which is 1.68-fold increase compared to the Fe-PNC without a magnetic field. This work provides a simple and environmentally friendly approach to CO2 reduction based on PNCs.
Original language | English |
---|---|
Article number | 152095 |
Journal | Chemical Engineering Journal |
Volume | 492 |
DOIs | |
State | Published - 15 Jul 2024 |
Bibliographical note
Publisher Copyright:© 2024 Elsevier B.V.
Keywords
- CO reduction
- Iron doping
- Magnetic field
- Photocatalyst
- Spin polarization