Spin Aharonov-Bohm effect and topological spin transistor

Joseph MacIejko, Eun Ah Kim, Xiao Liang Qi

Research output: Contribution to journalArticlepeer-review

56 Scopus citations


Ever since its discovery, the electron spin has only been measured or manipulated through the application of an electromagnetic force acting on the associated magnetic moment. In this work, we propose a spin Aharonov-Bohm effect in which the electron spin is controlled by a magnetic flux while no electromagnetic field is acting on the electron. Such a nonlocal spin manipulation is realized in an Aharonov-Bohm ring made from the recently discovered quantum spin Hall insulator, by taking advantage of the defining property of the quantum spin Hall edge states: the one-to-one correspondence between spin polarization and direction of propagation. The proposed setup can be used to realize a new spintronics device, the topological spin transistor, in which the spin rotation is completely controlled by a magnetic flux of hc/2e, independently of the details of the sample.

Original languageEnglish
Article number195409
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number19
StatePublished - 4 Nov 2010


Dive into the research topics of 'Spin Aharonov-Bohm effect and topological spin transistor'. Together they form a unique fingerprint.

Cite this