TY - JOUR
T1 - Spatial association of urban form and particulate matter
AU - Park, Yunmi
AU - Shin, Jiyeon
AU - Lee, Ji Yi
N1 - Funding Information:
This research was supported by the FRIEND (Fine Particle Research Initiative in East Asia Considering National Differences) Project (2020M3G1A1114536) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9
Y1 - 2021/9
N2 - Increasingly detrimental effects of fine particulate matter (PM) have been observed in Northeast Asia owing to its rapid economic development. Previous studies have found that dust, combustion, and chemical reactions are the major sources of PM; nevertheless, the spatial configuration of land use and land cover, which is of most interest to planners and landscape architects, also influences the PM levels. Here, we attempted to unveil the relationship between PM and different types of land use cover (i.e., developed, agricultural, woody, grass, and barren lands) in 122 municipalities of Korea. Landscape ecology metrics were applied to measure the spatial configuration of land use pattern and spatial lag models by taking into account the transboundary nature of air pollution, allowing us to conclude the following regarding PM levels: (1) the size of land cover type matters, but their spatial configuration also determines the variations in PM levels; (2) the contiguity and proximity of landcover patches are important; (3) the patterns of grasslands (e.g., simple, compact, and cluster (with large patches) patterns) and woodlands (e.g., complex, contiguous, and cluster (with large patches) patterns) considered desirable for minimizing PM are dissimilar in terms of contiguity.
AB - Increasingly detrimental effects of fine particulate matter (PM) have been observed in Northeast Asia owing to its rapid economic development. Previous studies have found that dust, combustion, and chemical reactions are the major sources of PM; nevertheless, the spatial configuration of land use and land cover, which is of most interest to planners and landscape architects, also influences the PM levels. Here, we attempted to unveil the relationship between PM and different types of land use cover (i.e., developed, agricultural, woody, grass, and barren lands) in 122 municipalities of Korea. Landscape ecology metrics were applied to measure the spatial configuration of land use pattern and spatial lag models by taking into account the transboundary nature of air pollution, allowing us to conclude the following regarding PM levels: (1) the size of land cover type matters, but their spatial configuration also determines the variations in PM levels; (2) the contiguity and proximity of landcover patches are important; (3) the patterns of grasslands (e.g., simple, compact, and cluster (with large patches) patterns) and woodlands (e.g., complex, contiguous, and cluster (with large patches) patterns) considered desirable for minimizing PM are dissimilar in terms of contiguity.
KW - Fine particulate matter
KW - Korea
KW - Land cover
KW - Landscape ecology
KW - Urban form
UR - http://www.scopus.com/inward/record.url?scp=85114361789&partnerID=8YFLogxK
U2 - 10.3390/ijerph18189428
DO - 10.3390/ijerph18189428
M3 - Article
C2 - 34574352
AN - SCOPUS:85114361789
SN - 1661-7827
VL - 18
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 18
M1 - 9428
ER -