Abstract
The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme — the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.
Original language | English |
---|---|
Pages (from-to) | 457-470 |
Number of pages | 14 |
Journal | Asia-Pacific Journal of Atmospheric Sciences |
Volume | 53 |
Issue number | 4 |
DOIs | |
State | Published - 1 Nov 2017 |
Bibliographical note
Publisher Copyright:© 2017, Korean Meteorological Society and Springer Science+Business Media B.V.
Keywords
- Land surface process
- University of TOrino model of land Process Interaction with Atmosphere (UTOPIA)
- climate change
- soil temperature
- soil-vegetation-atmosphere transfer (SVAT) scheme