TY - JOUR
T1 - Skin irritation and inhalation toxicity of biocides evaluated with reconstructed human epidermis and airway models
AU - Hwang, Jee hyun
AU - Jeong, Haengdueng
AU - Jung, Ye on
AU - Nam, Ki Taek
AU - Lim, Kyung Min
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/4
Y1 - 2021/4
N2 - Biocides are widely used in household products. Humans are exposed to biocides through dermal, inhalational, and oral routes. However, information on the dermal and inhalational toxicity of biocides is limited. We evaluated the effects of biocides on the skin and airways using the reconstructed human epidermis model KeraSkin™ and the airway model SoluAirway™. We determined the irritancy of 11 commonly used biocides (1,2-benzisothiazol-3(2H)-one [BIT], 2-phenoxyethanol [PE], zinc pyrithione, 2-bromo-2-nitropropane-1,3-diol, 3-iodoprop-2-ynyl N-butylcarbamate [IPBC], 2-octyl-1,2-thiazol-3-one, 2,2-dibromo-2-cyanoacetamide, 4-chloro-3-methylphenol [CC], 2-phenylphenol, deltamethrin, and 4,5-dichloro-2-octyl-1,2-thiazol-3-one) in the KeraSkin™ and SoluAirway™ by viability and histological examinations. BIT and CC were found to cause skin irritation at the approved concentrations or at the concentration close to approved limit while the others were non-irritants within the approved concentration. These results were confirmed via histology, wherein skin irritants induced erosion, vacuolation, and necrosis of the tissue. In the SoluAirway™, most of the biocides decreased cell viability even within the approved limits, except for PE, IPBC, and deltamethrin, suggesting that the airway may be more vulnerable to biocides than the skin. Taken together, our result indicates that some biocides can induce toxicity in skin and airway. Further studies on the dermal and inhalational toxicity of biocides are warranted.
AB - Biocides are widely used in household products. Humans are exposed to biocides through dermal, inhalational, and oral routes. However, information on the dermal and inhalational toxicity of biocides is limited. We evaluated the effects of biocides on the skin and airways using the reconstructed human epidermis model KeraSkin™ and the airway model SoluAirway™. We determined the irritancy of 11 commonly used biocides (1,2-benzisothiazol-3(2H)-one [BIT], 2-phenoxyethanol [PE], zinc pyrithione, 2-bromo-2-nitropropane-1,3-diol, 3-iodoprop-2-ynyl N-butylcarbamate [IPBC], 2-octyl-1,2-thiazol-3-one, 2,2-dibromo-2-cyanoacetamide, 4-chloro-3-methylphenol [CC], 2-phenylphenol, deltamethrin, and 4,5-dichloro-2-octyl-1,2-thiazol-3-one) in the KeraSkin™ and SoluAirway™ by viability and histological examinations. BIT and CC were found to cause skin irritation at the approved concentrations or at the concentration close to approved limit while the others were non-irritants within the approved concentration. These results were confirmed via histology, wherein skin irritants induced erosion, vacuolation, and necrosis of the tissue. In the SoluAirway™, most of the biocides decreased cell viability even within the approved limits, except for PE, IPBC, and deltamethrin, suggesting that the airway may be more vulnerable to biocides than the skin. Taken together, our result indicates that some biocides can induce toxicity in skin and airway. Further studies on the dermal and inhalational toxicity of biocides are warranted.
KW - Biocides
KW - KeraSkin™
KW - Reconstructed human airway model
KW - Reconstructed human epidermis model
KW - SoluAirway™
UR - http://www.scopus.com/inward/record.url?scp=85101352701&partnerID=8YFLogxK
U2 - 10.1016/j.fct.2021.112064
DO - 10.1016/j.fct.2021.112064
M3 - Article
C2 - 33596452
AN - SCOPUS:85101352701
SN - 0278-6915
VL - 150
JO - Food and Chemical Toxicology
JF - Food and Chemical Toxicology
M1 - 112064
ER -