Abstract
The mitochondrial sirtuin 3 (SIRT3) is involved in suppressing the onset of multiple pathologies, including cardiovascular disease, fatty liver, age-related hearing loss, and breast cancer. But a physiological role of SIRT3 in bone metabolism is not known. Here we show that SIRT3 is a key regulatory molecule to maintain bone homeostasis. Mice deficient in SIRT3 exhibited severe osteopenia owing to increased numbers of osteoclasts. Osteoclast precursors from Sirt3-/- mice underwent increased osteoclastogenesis in response to receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclast differentiation. SIRT3 expression from RANKL induction depended on the transcription coactivator PGC-1β (peroxisome proliferator-activated receptor-γ co-activator-1β) and the nuclear receptor ERRα (estrogen receptor-related receptor α), and that SIRT3 inhibited the differentiation by interfering with the RANKL-induced expression of PGC-1β. Thus an auto-regulatory feedback mechanism operates to induce its own inhibitor SIRT3 by PGC-1β. Moreover, Sirt3-/- osteoclast precursors reduced AMP-activated protein kinase (AMPK) phosphorylation through down-regulating the expression of AMPK. Our results suggest that a mitochondrial SIRT3 is an intrinsic inhibitor for RANKL-mediated osteoclastogenesis.
Original language | English |
---|---|
Article number | 22511 |
Journal | Scientific Reports |
Volume | 6 |
DOIs | |
State | Published - 1 Mar 2016 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2013R1A2A1A05005153; No. 2012R1A5A1048236; No. 2012M3A9C5048708; No. 2015R1D1A4A01020104). Y.C. was supported in part by grant (AR067726) from the National Institutes of Health.