TY - JOUR
T1 - Single-Step Electrospun Ir/IrO 2 Nanofibrous Structures Decorated with Au Nanoparticles for Highly Catalytic Oxygen Evolution Reaction
AU - Moon, Sinyoung
AU - Cho, Yun Bin
AU - Yu, Areum
AU - Kim, Myung Hwa
AU - Lee, Chongmok
AU - Lee, Youngmi
N1 - Funding Information:
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1A2A2A14001137) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025340).
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2019/1/16
Y1 - 2019/1/16
N2 - Nanocomposites of gold (Au) and iridium (Ir) oxide with various compositions (denoted as Au x Ir 1-x O y , x = 0.05, 0.10, or 0.33, Au precursor molar ratio to Ir precursor) were synthesized via electrospinning and subsequent calcination method with two different solvent composition ratios of ethanol to N,N-dimethylformamide (DMF) in the electrospinning solution (ethanol/DMF = 70:30 or 50:50% v/v). Simple single-step electrospinning successfully fabricated a hierarchical nanostructure having Au nanoparticles formed on fibrous main frames of Ir/IrO 2 . Different solvent composition in the electrospinning solution induced the formation of main frames with distinct nanostructures; nanoribbons (Au x Ir 1-x O y -70) with ethanol/DMF = 70:30; and nanofibers (Au x Ir 1-x O y -50) with ethanol/DMF = 50:50. The pure Ir or Au counterparts (IrO y and Au) were also prepared by the same synthetic procedure as Au x Ir 1-x O y . Oxygen evolution reaction (OER) activities of as-synthesized Au x Ir 1-x O y were investigated in 0.5 M H 2 SO 4 and compared to those of IrO y , Au, and commercial iridium (Ir/C, 20% Ir loading on Vulcan carbon). Among them, Au 0.10 Ir 0.90 O y -50 exhibited the best OER activity, even better than previously reported catalysts containing both Ir and Au. The high OER activity of Au 0.10 Ir 0.90 O y -50 was mainly attributed to the fiber frame structure and the optimal interfacial areas between Au and Ir/IrO 2 , which are electrophilic OER active sites. The stability of Au 0.10 Ir 0.90 O y -50 was also evaluated to be much higher than that of Ir/C during OER. The current study suggests that the presence of Au on the Ir/IrO 2 surface improves the OER activity of Ir/IrO 2 .
AB - Nanocomposites of gold (Au) and iridium (Ir) oxide with various compositions (denoted as Au x Ir 1-x O y , x = 0.05, 0.10, or 0.33, Au precursor molar ratio to Ir precursor) were synthesized via electrospinning and subsequent calcination method with two different solvent composition ratios of ethanol to N,N-dimethylformamide (DMF) in the electrospinning solution (ethanol/DMF = 70:30 or 50:50% v/v). Simple single-step electrospinning successfully fabricated a hierarchical nanostructure having Au nanoparticles formed on fibrous main frames of Ir/IrO 2 . Different solvent composition in the electrospinning solution induced the formation of main frames with distinct nanostructures; nanoribbons (Au x Ir 1-x O y -70) with ethanol/DMF = 70:30; and nanofibers (Au x Ir 1-x O y -50) with ethanol/DMF = 50:50. The pure Ir or Au counterparts (IrO y and Au) were also prepared by the same synthetic procedure as Au x Ir 1-x O y . Oxygen evolution reaction (OER) activities of as-synthesized Au x Ir 1-x O y were investigated in 0.5 M H 2 SO 4 and compared to those of IrO y , Au, and commercial iridium (Ir/C, 20% Ir loading on Vulcan carbon). Among them, Au 0.10 Ir 0.90 O y -50 exhibited the best OER activity, even better than previously reported catalysts containing both Ir and Au. The high OER activity of Au 0.10 Ir 0.90 O y -50 was mainly attributed to the fiber frame structure and the optimal interfacial areas between Au and Ir/IrO 2 , which are electrophilic OER active sites. The stability of Au 0.10 Ir 0.90 O y -50 was also evaluated to be much higher than that of Ir/C during OER. The current study suggests that the presence of Au on the Ir/IrO 2 surface improves the OER activity of Ir/IrO 2 .
KW - electrocatalysis
KW - electrospinning
KW - fibrous nanocomposite
KW - gold
KW - iridium oxide
KW - oxygen evolution reaction
UR - http://www.scopus.com/inward/record.url?scp=85059817273&partnerID=8YFLogxK
U2 - 10.1021/acsami.8b14563
DO - 10.1021/acsami.8b14563
M3 - Article
C2 - 30582793
AN - SCOPUS:85059817273
SN - 1944-8244
VL - 11
SP - 1979
EP - 1987
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 2
ER -