TY - JOUR
T1 - Single Phase Trimetallic Spinel CoCrxRh2-xO4 Nanofibers for Highly Efficient Oxygen Evolution Reaction under Freshwater Mimicking Seawater Conditions
AU - Jin, Dasol
AU - Woo, Hyerim
AU - Prabhakaran, Sampath
AU - Lee, Youngmi
AU - Kim, Myung Hwa
AU - Kim, Do Hwan
AU - Lee, Chongmok
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023/6/19
Y1 - 2023/6/19
N2 - Electrochemical water splitting is a promising pathway for sustainable oxygen production in terms of energy conversion. Seawater electrolysis, especially, is a sustainable approach to carbon-neutral energy conversion without reliance on freshwater; however, extreme corrosion of anodic electrode caused by highly corrosive Cl− is a main challenge of seawater oxidation. To address this issue, herein, nanofibers of trimetallic spinel CoCrxRh2-xO4 with various composition ratios are prepared for highly sustained water oxidation electrocatalysis. Among a series of CoCrxRh2-xO4, CoCr0.7Rh1.3O4 nanofibers exhibit excellent electrocatalytic activity for oxygen evolution reaction (OER): the highest mass activity, the lowest overpotential at 10 mA cm−2 and the smallest Tafel slope with robust long-term stability under alkaline electrolyte. In addition, CoCr0.7Rh1.3O4 nanofibers deliver better OER performances in simulated seawater than a commercial benchmark catalyst (IrO2 nanoparticles), demonstrating that feasibility of alkaline seawater electrolysis with CoCr0.7Rh1.3O4 nanofibers as an OER electrocatalyst.
AB - Electrochemical water splitting is a promising pathway for sustainable oxygen production in terms of energy conversion. Seawater electrolysis, especially, is a sustainable approach to carbon-neutral energy conversion without reliance on freshwater; however, extreme corrosion of anodic electrode caused by highly corrosive Cl− is a main challenge of seawater oxidation. To address this issue, herein, nanofibers of trimetallic spinel CoCrxRh2-xO4 with various composition ratios are prepared for highly sustained water oxidation electrocatalysis. Among a series of CoCrxRh2-xO4, CoCr0.7Rh1.3O4 nanofibers exhibit excellent electrocatalytic activity for oxygen evolution reaction (OER): the highest mass activity, the lowest overpotential at 10 mA cm−2 and the smallest Tafel slope with robust long-term stability under alkaline electrolyte. In addition, CoCr0.7Rh1.3O4 nanofibers deliver better OER performances in simulated seawater than a commercial benchmark catalyst (IrO2 nanoparticles), demonstrating that feasibility of alkaline seawater electrolysis with CoCr0.7Rh1.3O4 nanofibers as an OER electrocatalyst.
KW - cobalt-chromium-rhodium spinel oxides (CoCr Rh O )
KW - nanofibers
KW - oxygen evolution reactions
KW - seawater electrocatalysis
UR - http://www.scopus.com/inward/record.url?scp=85150754030&partnerID=8YFLogxK
U2 - 10.1002/adfm.202301559
DO - 10.1002/adfm.202301559
M3 - Article
AN - SCOPUS:85150754030
SN - 1616-301X
VL - 33
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 25
M1 - 2301559
ER -