Simultaneous synthesis of a heat exchanger network with multiple utilities using utility substages

Jonggeol Na, Jaeheum Jung, Chansaem Park, Chonghun Han

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Heat exchanger network synthesis (HENS) has progressed by using mathematical programming-based simultaneous methodology. Although various considerations such as non-isothermal mixing and bypass streams are applied to consider real world alternatives in modeling phase, many challenges are faced because of its properties within non-convex mixed-integer nonlinear programming (MINLP). We propose a modified superstructure, which contains a utility substage for use in considering multiple utilities in a simultaneous MINLP model. To improve model size and convergence, fixed utility locations according to temperature and series connections between utilities are suggested. The numbers of constraints, discrete, and continuous variables show that overall model size decreases compared with previous research. Thus, it is possible to expand the feasible search area for reaching the nearest global solution. The model's effectiveness and applications are exemplified by several literature problems, where it is used to deduce a network superior to that of any other reported methodology.

Original languageEnglish
Pages (from-to)70-79
Number of pages10
JournalComputers and Chemical Engineering
Volume79
DOIs
StatePublished - 4 Aug 2015

Bibliographical note

Publisher Copyright:
© 2015.

Keywords

  • Discrete variable
  • Heat exchanger network synthesis (HENS)
  • Mathematical programming
  • Mixed-integer nonlinear programming (MINLP)
  • Multiple utilities

Fingerprint

Dive into the research topics of 'Simultaneous synthesis of a heat exchanger network with multiple utilities using utility substages'. Together they form a unique fingerprint.

Cite this