Abstract
We prove that, for simple modules M and N over a quantum affine algebra, their tensor product M ⊗ N has a simple head and a simple socle if M ⊗ M is simple. A similar result is proved for the convolution product of simple modules over quiver Hecke algebras.
| Original language | English |
|---|---|
| Pages (from-to) | 377-396 |
| Number of pages | 20 |
| Journal | Compositio Mathematica |
| Volume | 151 |
| Issue number | 2 |
| DOIs | |
| State | Published - 25 Feb 2015 |
Bibliographical note
Publisher Copyright:© 2014 Foundation Compositio Mathematica.
Keywords
- Khovanov-Lauda-Rouquier algebra
- R-matrix
- quantum affine algebra