TY - JOUR
T1 - Simple fabrication of amperometric nitric oxide microsensors based on electropolymerized membrane films
AU - Shim, Jun Ho
AU - Do, Hyunkyung
AU - Lee, Youngmi
PY - 2010/2
Y1 - 2010/2
N2 - Demand for highly sensitive, selective, and practically reliable sensors which could be easily fabricated is increasing for various applications in biological and biomedical systems. Thus, here we present a novel and simple amperometric NO microsensor based on electropolymerized polymeric films. The sensor consists of a platinized Pt disk anode (25-mm diameter) which surface is modified with electropolymerized polymer films and a Ag/AgCl wire cathode coiled around the anode. Three different electropolymerized films prepared from m-phenylenediamine (m-PD), 2,3-diaminonaphthalene (2,3-DAN), and 5-amino-1-naphthol (5A1N) are compared in terms of their permselectivity for NO over major biological interferents such as anionic nitrite, ascorbic acid, uric acid; neutral acetaminophen; and cationic dopamine. Poly-5A1N film layer among the three different polymers shows the best anti-interference characteristics for all the electroactive interferents examined. Indeed, single polymer film of electropolymerized 5A1N without any additional modification as a NO selective membrane is confirmed to be sufficient to reject anionic, neutral, as well as cationic interferents while allowing relatively high permeation of NO through it. Other analytical performance of the NO microsensor fabricated with poly-5A1N is evaluated: reliable linear dynamic range (a few tens nM to mM); sensitivity of 122.0 2.5 pA/mM; detection limit of <5.8 nM (S/N 1/43); response time, t90% <5 s, which are excellent when considering the small sensor size. Another sensor design which has both an anode (poly-5A1N modified platinized Pt) and a cathode (Ag/AgCl disk) embedded in a single sensor body is also presented.
AB - Demand for highly sensitive, selective, and practically reliable sensors which could be easily fabricated is increasing for various applications in biological and biomedical systems. Thus, here we present a novel and simple amperometric NO microsensor based on electropolymerized polymeric films. The sensor consists of a platinized Pt disk anode (25-mm diameter) which surface is modified with electropolymerized polymer films and a Ag/AgCl wire cathode coiled around the anode. Three different electropolymerized films prepared from m-phenylenediamine (m-PD), 2,3-diaminonaphthalene (2,3-DAN), and 5-amino-1-naphthol (5A1N) are compared in terms of their permselectivity for NO over major biological interferents such as anionic nitrite, ascorbic acid, uric acid; neutral acetaminophen; and cationic dopamine. Poly-5A1N film layer among the three different polymers shows the best anti-interference characteristics for all the electroactive interferents examined. Indeed, single polymer film of electropolymerized 5A1N without any additional modification as a NO selective membrane is confirmed to be sufficient to reject anionic, neutral, as well as cationic interferents while allowing relatively high permeation of NO through it. Other analytical performance of the NO microsensor fabricated with poly-5A1N is evaluated: reliable linear dynamic range (a few tens nM to mM); sensitivity of 122.0 2.5 pA/mM; detection limit of <5.8 nM (S/N 1/43); response time, t90% <5 s, which are excellent when considering the small sensor size. Another sensor design which has both an anode (poly-5A1N modified platinized Pt) and a cathode (Ag/AgCl disk) embedded in a single sensor body is also presented.
KW - Electrochemistry
KW - Electropolymerization
KW - Microsensor
KW - Nitric oxide
KW - Polymer membrane
UR - http://www.scopus.com/inward/record.url?scp=75849132576&partnerID=8YFLogxK
U2 - 10.1002/elan.200900353
DO - 10.1002/elan.200900353
M3 - Article
AN - SCOPUS:75849132576
SN - 1040-0397
VL - 22
SP - 359
EP - 366
JO - Electroanalysis
JF - Electroanalysis
IS - 3
ER -