TY - JOUR
T1 - Serum biomarkers from cell-based assays for AhRL and MIS strongly predicted the future development of diabetes in a large community-based prospective study in Korea
AU - Lee, Hong Kyu
AU - Park, Wook Ha
AU - Kang, Young Cheol
AU - Kang, Sora
AU - Im, Suyeol
AU - Park, Sol
AU - Kim, Jin Taek
AU - Lee, Minhyeok
AU - Seok, Junhee
AU - Oh, Man Suk
AU - Choi, Hoon Sung
AU - Pak, Youngmi Kim
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Exposure to environment-polluting chemicals (EPC) is associated with the development of diabetes. Many EPCs exert toxic effects via aryl hydrocarbon receptor (AhR) and/or mitochondrial inhibition. Here we investigated if the levels of human exposure to a mixture of EPC and/or mitochondrial inhibitors could predict the development of diabetes in a prospective study, the Korean Genome and Epidemiological Study (KoGES). We analysed AhR ligands (AhRL) and mitochondria-inhibiting substances (MIS) in serum samples (n = 1,537), collected during the 2008 Ansung KoGES survey with a 4-year-follow-up. Serum AhRL, determined by the AhR-dependent luciferase reporter assay, represents the contamination level of AhR ligand mixture in serum. Serum levels of MIS, analysed indirectly by MIS-ATP or MIS-ROS, are the serum MIS-induced mitochondria inhibiting effects on ATP content or reactive oxygen species (ROS) production in the cultured cells. Among 919 normal subjects at baseline, 7.1% developed impaired glucose tolerance (IGT) and 1.6% diabetes after 4 years. At the baseline, diabetic and IGT sera displayed higher AhRL and MIS than normal sera, which correlated with indices of insulin resistance. When the subjects were classified according to ROC cut-off values, fully adjusted relative risks of diabetes development within 4 years were 7.60 (95% CI, 4.23–13.64), 4.27 (95% CI, 2.38–7.64), and 21.11 (95% CI, 8.46–52.67) for AhRL ≥ 2.70 pM, MIS-ATP ≤ 88.1%, and both, respectively. Gender analysis revealed that male subjects with AhRL ≥ 2.70 pM or MIS-ATP ≤ 88.1% showed higher risk than female subjects. High serum levels of AhRL and/or MIS strongly predict the future development of diabetes, suggesting that the accumulation of AhR ligands and/or mitochondrial inhibitors in body may play an important role in the pathogenesis of diabetes.
AB - Exposure to environment-polluting chemicals (EPC) is associated with the development of diabetes. Many EPCs exert toxic effects via aryl hydrocarbon receptor (AhR) and/or mitochondrial inhibition. Here we investigated if the levels of human exposure to a mixture of EPC and/or mitochondrial inhibitors could predict the development of diabetes in a prospective study, the Korean Genome and Epidemiological Study (KoGES). We analysed AhR ligands (AhRL) and mitochondria-inhibiting substances (MIS) in serum samples (n = 1,537), collected during the 2008 Ansung KoGES survey with a 4-year-follow-up. Serum AhRL, determined by the AhR-dependent luciferase reporter assay, represents the contamination level of AhR ligand mixture in serum. Serum levels of MIS, analysed indirectly by MIS-ATP or MIS-ROS, are the serum MIS-induced mitochondria inhibiting effects on ATP content or reactive oxygen species (ROS) production in the cultured cells. Among 919 normal subjects at baseline, 7.1% developed impaired glucose tolerance (IGT) and 1.6% diabetes after 4 years. At the baseline, diabetic and IGT sera displayed higher AhRL and MIS than normal sera, which correlated with indices of insulin resistance. When the subjects were classified according to ROC cut-off values, fully adjusted relative risks of diabetes development within 4 years were 7.60 (95% CI, 4.23–13.64), 4.27 (95% CI, 2.38–7.64), and 21.11 (95% CI, 8.46–52.67) for AhRL ≥ 2.70 pM, MIS-ATP ≤ 88.1%, and both, respectively. Gender analysis revealed that male subjects with AhRL ≥ 2.70 pM or MIS-ATP ≤ 88.1% showed higher risk than female subjects. High serum levels of AhRL and/or MIS strongly predict the future development of diabetes, suggesting that the accumulation of AhR ligands and/or mitochondrial inhibitors in body may play an important role in the pathogenesis of diabetes.
UR - http://www.scopus.com/inward/record.url?scp=85083545009&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-62550-6
DO - 10.1038/s41598-020-62550-6
M3 - Article
C2 - 32286339
AN - SCOPUS:85083545009
SN - 2045-2322
VL - 10
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 6339
ER -