Abstract
A major challenge in cancer treatment is the development of effective tumor-specific therapeutic methods that have minimal side effects. Recently, a photodynamic therapy (PDT) technique using activatable photosensitizers (aPSs) has shown great potential for cancer-specific treatment. Here, we develop a sequential protein-responsive aPS (PcC4-MSN-O1) that is based on zinc(II) phthalocyanine derivative (PcC4)-entrapped mesoporous silica nanoparticles (MSNs) and a wrapping DNA (O1) as a biogate. Inside the nanostructure of PcC4-MSN-O1, PcC4 shows self-quenching photoactivity. However, when PcC4-MSN-O1 sequentially reacts with telomerase and albumin, its photoactivity is dramatically turned on. Therefore, PcC4-MSN-O1 displays selective phototoxicity against cancer cells (e.g., HeLa) over normal cells (e.g., HEK-293). Following systemic PcC4-MSN-O1 administration, there is an obvious accumulation in HeLa tumors of xenograft-bearing mice, and laser irradiation clearly induces the inhibition of tumor growth. Moreover, the time-modulated activation process in tumors and the relatively fast excretion of PcC4-MSN-O1 indicate its advantages in reducing potential side effects.
Original language | English |
---|---|
Pages (from-to) | 6702-6710 |
Number of pages | 9 |
Journal | ACS Nano |
Volume | 13 |
Issue number | 6 |
DOIs | |
State | Published - 25 Jun 2019 |
Bibliographical note
Publisher Copyright:© 2019 American Chemical Society.
Keywords
- Nanophotosensitizer
- activatable
- photodynamic therapy
- phthalocyanine
- protein-responsive