@article{cf015f117440432d95d060f2f0acdfaf,
title = "Semiconductor-less vertical transistor with I ON/I OFF of 106",
abstract = "Semiconductors have long been perceived as a prerequisite for solid-state transistors. Although switching principles for nanometer-scale devices have emerged based on the deployment of two-dimensional (2D) van der Waals heterostructures, tunneling and ballistic currents through short channels are difficult to control, and semiconducting channel materials remain indispensable for practical switching. In this study, we report a semiconductor-less solid-state electronic device that exhibits an industry-applicable switching of the ballistic current. This device modulates the field emission barrier height across the graphene-hexagonal boron nitride interface with ION/IOFF of 106 obtained from the transfer curves and adjustable intrinsic gain up to 4, and exhibits unprecedented current stability in temperature range of 15–400 K. The vertical device operation can be optimized with the capacitive coupling in the device geometry. The semiconductor-less switching resolves the long-standing issue of temperature-dependent device performance, thereby extending the potential of 2D van der Waals devices to applications in extreme environments.",
author = "Lee, {Jun Ho} and Shin, {Dong Hoon} and Heejun Yang and Jeong, {Nae Bong} and Park, {Do Hyun} and Kenji Watanabe and Takashi Taniguchi and Eunah Kim and Lee, {Sang Wook} and Jhang, {Sung Ho} and Park, {Bae Ho} and Young Kuk and Chung, {Hyun Jong}",
note = "Funding Information: H.-J.C. acknowledges support from Samsung Research Funding & Incubation Center for Future Technology (SRFC) (SRFC-MA1502-08) and National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (NRF-2020R1A2C1003398) and (MOE) (NRF-2018R1D1A1B07050452). H.Y. acknowledges support from National Research Foundation of Korea (NRF) under NRF-2020R1A2B5B02002548. B.H.P. acknowledges support from the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (No. 2013R1A3A2042120). S.H.J. acknowledges support from National Research Foundation of Korea (NRF) under NRF-2018R1A2B6003937. S.W.L. acknowledges support from the Basic Science Research Program (NRF-2019R1A2C1085641) through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant Number JPMXP0112101001, JSPS KAKENHI Grant Number JP20H00354, and the CREST (JPMJCR15F3), JST. Publisher Copyright: {\textcopyright} 2021, The Author(s).",
year = "2021",
month = dec,
day = "1",
doi = "10.1038/s41467-021-21138-y",
language = "English",
volume = "12",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",
}