Semantic Segmentation of Pancreatic Cancer in Endoscopic Ultrasound Images Using Deep Learning Approach

Kangwon Seo, Jung Hyun Lim, Jeongwung Seo, Leang Sim Nguon, Hongeun Yoon, Jin Seok Park, Suhyun Park

Research output: Contribution to journalArticlepeer-review

Abstract

Endoscopic ultrasonography (EUS) plays an important role in diagnosing pancreatic cancer. Surgical therapy is critical to pancreatic cancer survival and can be planned properly, with the characteristics of the target cancer determined. The physical characteristics of the pancreatic cancer, such as size, location, and shape, can be determined by semantic segmentation of EUS images. This study proposes a deep learning approach for the segmentation of pancreatic cancer in EUS images. EUS images were acquired from 150 patients diagnosed with pancreatic cancer. A network with deep attention features (DAF-Net) is proposed for pancreatic cancer segmentation using EUS images. The performance of the deep learning models (U-Net, Attention U-Net, and DAF-Net) was evaluated by 5-fold cross-validation. For the evaluation metrics, the Dice similarity coefficient (DSC), intersection over union (IoU), receiver operating characteristic (ROC) curve, and area under the curve (AUC) were chosen. Statistical analysis was performed for different stages and locations of the cancer. DAF-Net demonstrated superior segmentation performance for the DSC, IoU, AUC, sensitivity, specificity, and precision with scores of 82.8%, 72.3%, 92.7%, 89.0%, 98.1%, and 85.1%, respectively. The proposed deep learning approach can provide accurate segmentation of pancreatic cancer in EUS images and can effectively assist in the planning of surgical therapies.

Original languageEnglish
Article number5111
JournalCancers
Volume14
Issue number20
DOIs
StatePublished - Oct 2022

Keywords

  • deep learning
  • endoscopic ultrasonography
  • pancreatic cancer
  • segmentation
  • surgical therapy

Fingerprint

Dive into the research topics of 'Semantic Segmentation of Pancreatic Cancer in Endoscopic Ultrasound Images Using Deep Learning Approach'. Together they form a unique fingerprint.

Cite this