Abstract
Nanohybrids of CdS-polyoxotungstate with strongly coupled electronic structures and visible-light-active photofunctions can be synthesized by electrostatically derived self-assembly of very small CdS quantum dots, or QDs, (particle size ≈ 2.5 nm) and polyoxotungstate nanoclusters (cluster size ≈ 1 nm). The formation of CdS-polyoxotungstate nanohybrids is confirmed by high-resolution transmission electron microscopy, elemental mapping, and powder X-ray diffraction analysis. Due to the strong electronic coupling between two semiconductors, the CdS-polyoxotungstate nanohybrids show a narrow bandgap energy of around 1.9-2.7 eV, thus reflecting their ability to harvest visible light. Time-resolved photoluminescence experiments indicate that the self-assembly between nanosized CdS and polyoxotungstate is very effective in increasing the lifetime of holes and electrons, thus indicating an efficient electron transfer between two-component semiconductors. The hybridization results not only in a significant improvement in the photostability of CdS QD but also in the creation of visible-light-induced photochromism. Of particular importance is that the present nanohybrids show visible-light-driven photocatalytic activity to produce H 2 and O 2, which is superior to those of the unhybridized CdS and polyoxotungstate. The self-assembly of nanometer-level semiconductor clusters can provide a powerful way of optimizing the photoinduced functionalities of each component (i.e., visible-induced photochromism and photocatalysis) by means of strong electronic coupling.
Original language | English |
---|---|
Pages (from-to) | 9626-9633 |
Number of pages | 8 |
Journal | Chemistry - A European Journal |
Volume | 17 |
Issue number | 35 |
DOIs | |
State | Published - 22 Aug 2011 |
Keywords
- electronic structure
- nanostructures
- photochromism
- polyoxometalates
- self-assembly