Abstract
Recurrent directional selection on a partially recombining chromosome may cause a substantial reduction of standing genetic variation in natural populations. Previous studies of this effect, commonly called selective sweeps, assumed that at most one beneficial allele is on the way to fixation at a given time. However, for a high rate of selected substitutions and a low recombination rate, this assumption can easily be violated. We investigated this problem using full-forward simulations and analytical approximations. We found that interference between linked beneficial alleles causes a reduction of their fixation probabilities. The hitchhiking effect on linked neutral variation for a given substitution also slightly decreases due to interference. As a result, the strength of recurrent selective sweeps is weakened. However, this effect is significant only in chromosomal regions of relatively low recombination rates where the level of variation is greatly reduced. Therefore, previous results on recurrent selective sweeps although derived for a restricted parameter range are still valid. Analytical approximations are obtained for the case of complete linkage for which interference between competing beneficial alleles is maximal.
Original language | English |
---|---|
Pages (from-to) | 389-398 |
Number of pages | 10 |
Journal | Genetics |
Volume | 164 |
Issue number | 1 |
State | Published - 1 May 2003 |