Abstract
We report fabrication of Ti metal nanodot arrays by scanning probe microscopic indentation. A thin poly-methylmethacrylate (PMMA) layer was spin-coated on Si substrates with thickness of 70nm. Nanometer-size pore arrays were formed by indenting the PMMA layer using a cantilever of a scanning probe microscope. Protuberances with irregular boundaries appeared during the indentation process. Control of approach and pulling-out speed during indentation was able to dispose of the protrusions. Ti metal films were deposited on the patterned PMMA layers by a radio-frequency sputtering method and subsequently lifted off to obtain metal nanodot arrays. The fabricated metal nanodot arrays have 200nm of diameter and 500nm of interdistance, which corresponds to a density of 4×108/cm2. Scanning probe-based measurement of current-voltage (I-V) behaviors for a single Ti metal nanodot showed asymmetric characteristics. Applying external bias is likely to induce oxidation of Ti metal, since the conductance decreased and volume change of the dots was observed. I-V behaviors of Ti metal nanodots by conventional e-beam lithography were also characterized for comparison.
Original language | English |
---|---|
Pages (from-to) | 737-740 |
Number of pages | 4 |
Journal | Ultramicroscopy |
Volume | 110 |
Issue number | 6 |
DOIs | |
State | Published - May 2010 |
Keywords
- Indentation
- Scanning probe lithography
- Titanium nanodot arrays