TY - JOUR
T1 - Satellite Data-Based Phenological Evaluation of the Nationwide Reforestation of South Korea
AU - Jeong, Su Jong
AU - Ho, Chang Hoi
AU - Choi, Sung Deuk
AU - Kim, Jinwon
AU - Lee, Eun Ju
AU - Gim, Hyeon Ju
PY - 2013/3/8
Y1 - 2013/3/8
N2 - Through the past 60 years, forests, now of various age classes, have been established in the southern part of the Korean Peninsula through nationwide efforts to reestablish forests since the Korean War (1950-53), during which more than 65% of the nation's forest was destroyed. Careful evaluation of long-term changes in vegetation growth after reforestation is one of the essential steps to ensuring sustainable forest management. This study investigated nationwide variations in vegetation phenology using satellite-based growing season estimates for 1982-2008. The start of the growing season calculated from the normalized difference vegetation index (NDVI) agrees reasonably with the ground-observed first flowering date both temporally (correlation coefficient, r = 0.54) and spatially (r = 0.64) at the 95% confidence level. Over the entire 27-year period, South Korea, on average, experienced a lengthening of the growing season of 4.5 days decade-1, perhaps due to recent global warming. The lengthening of the growing season is attributed mostly to delays in the end of the growing season. The retrieved nationwide growing season data were used to compare the spatial variations in forest biomass carbon density with the time-averaged growing season length for 61 forests. Relatively higher forest biomass carbon density was observed over the regions having a longer growing season, especially for the regions dominated by young (<30 year) forests. These results imply that a lengthening of the growing season related to the ongoing global warming may have positive impacts on carbon sequestration, an important aspect of large-scale forest management for sustainable development.
AB - Through the past 60 years, forests, now of various age classes, have been established in the southern part of the Korean Peninsula through nationwide efforts to reestablish forests since the Korean War (1950-53), during which more than 65% of the nation's forest was destroyed. Careful evaluation of long-term changes in vegetation growth after reforestation is one of the essential steps to ensuring sustainable forest management. This study investigated nationwide variations in vegetation phenology using satellite-based growing season estimates for 1982-2008. The start of the growing season calculated from the normalized difference vegetation index (NDVI) agrees reasonably with the ground-observed first flowering date both temporally (correlation coefficient, r = 0.54) and spatially (r = 0.64) at the 95% confidence level. Over the entire 27-year period, South Korea, on average, experienced a lengthening of the growing season of 4.5 days decade-1, perhaps due to recent global warming. The lengthening of the growing season is attributed mostly to delays in the end of the growing season. The retrieved nationwide growing season data were used to compare the spatial variations in forest biomass carbon density with the time-averaged growing season length for 61 forests. Relatively higher forest biomass carbon density was observed over the regions having a longer growing season, especially for the regions dominated by young (<30 year) forests. These results imply that a lengthening of the growing season related to the ongoing global warming may have positive impacts on carbon sequestration, an important aspect of large-scale forest management for sustainable development.
UR - http://www.scopus.com/inward/record.url?scp=84874780279&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0058900
DO - 10.1371/journal.pone.0058900
M3 - Article
C2 - 23520541
AN - SCOPUS:84874780279
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 3
M1 - e58900
ER -