TY - JOUR
T1 - rpoB gene sequencing for phylogenetic analysis of avian pathogenic Escherichia coli
AU - Kwon, Hyuk Joon
AU - Seong, Won Jin
AU - Kim, Tae Eun
AU - Won, Yong Jin
AU - Kim, Jae Hong
PY - 2015
Y1 - 2015
N2 - The present study was conducted to determine the full rpoB and eight house-keeping gene sequences of 78 and 35, respectively, avian pathogenic E. coli (APEC) strains. Phylogenetic comparison with 66 E. coli and Shigella strains from GenBank and EMBL was also conducted. Based on the full rpoB sequence, 50 different rpoB sequence types (RSTs) were identified. RST 1 was assigned to a major RST that included 34.7% (50/144) of the analyzed strains. RST 2 to RST 50 were then assigned to other strains with higher nucleotide sequence similarity to RST 1 in order. RST 1, 11, and 23 were mixed with APEC along with human commensal and pathogenic strains while RST 2, 6, 9, 13-15, 22, 24, 25, 33, 34, 36, and 41 were unique to APEC strains. Only five APEC strains grouped into RST 32 and 47, which contained human pathogenic E. coli (HPEC). Thus, most of the APEC strains had genetic backgrounds different from HPEC strains. However, the minor APEC strains similar to HPEC should be considered potential zoonotic risks. The resolution power of multi-locus sequence typing (MLST) was better than RST testing. Nevertheless, phylogenetic analysis of rpoB was simpler and more economic than MLST.
AB - The present study was conducted to determine the full rpoB and eight house-keeping gene sequences of 78 and 35, respectively, avian pathogenic E. coli (APEC) strains. Phylogenetic comparison with 66 E. coli and Shigella strains from GenBank and EMBL was also conducted. Based on the full rpoB sequence, 50 different rpoB sequence types (RSTs) were identified. RST 1 was assigned to a major RST that included 34.7% (50/144) of the analyzed strains. RST 2 to RST 50 were then assigned to other strains with higher nucleotide sequence similarity to RST 1 in order. RST 1, 11, and 23 were mixed with APEC along with human commensal and pathogenic strains while RST 2, 6, 9, 13-15, 22, 24, 25, 33, 34, 36, and 41 were unique to APEC strains. Only five APEC strains grouped into RST 32 and 47, which contained human pathogenic E. coli (HPEC). Thus, most of the APEC strains had genetic backgrounds different from HPEC strains. However, the minor APEC strains similar to HPEC should be considered potential zoonotic risks. The resolution power of multi-locus sequence typing (MLST) was better than RST testing. Nevertheless, phylogenetic analysis of rpoB was simpler and more economic than MLST.
KW - Avian pathogenic Escherichia coli
KW - Multi-locus sequence typing
KW - Phylogenetic analysis
KW - rpoB
UR - http://www.scopus.com/inward/record.url?scp=84975796066&partnerID=8YFLogxK
U2 - 10.14405/kjvr.2015.55.1.31
DO - 10.14405/kjvr.2015.55.1.31
M3 - Article
AN - SCOPUS:84975796066
SN - 2466-1384
VL - 55
SP - 31
EP - 39
JO - Korean Journal of Veterinary Research
JF - Korean Journal of Veterinary Research
IS - 1
ER -