Abstract
In this paper, we describe the behavior of bounded energy finite solutions for certain nonlinear elliptic operators on a complete Riemannian manifold in terms of its p-harmonic boundary. We also prove that if two complete Riemannian manifolds are roughly isometric to each other, then their p-harmonic boundaries are homeomorphic to each other. In the case, there is a one to one correspondence between the sets of bounded energy finite solutions on such manifolds. In particular, in the case of the Laplacian, it becomes a linear isomorphism between the spaces of bounded harmonic functions with finite Dirichlet integral on the manifolds.
Original language | English |
---|---|
Pages (from-to) | 83-97 |
Number of pages | 15 |
Journal | Potential Analysis |
Volume | 23 |
Issue number | 1 |
DOIs | |
State | Published - Aug 2005 |
Bibliographical note
Funding Information:★ This work was supported by grant No. R06-2002-012-01001-0(2002) from the Basic Research Program of the Korea Science & Engineering Foundation.
Keywords
- Rough isometry
- p-harmonic boundary
- p-harmonic function