TY - JOUR
T1 - Role of muscular eNOS in skeletal arteries
T2 - Endothelium-independent hypoxic vasoconstriction of the femoral artery is impaired in eNOS-deficient mice
AU - Kim, Hae Jin
AU - Yoo, Hae Young
AU - Lin, Hai Yue
AU - Oh, Goo Taeg
AU - Zhang, Yin Hua
AU - Kim, Sung Joon
N1 - Publisher Copyright:
© 2016 the American Physiological Society. All rights reserved.
PY - 2016
Y1 - 2016
N2 - We previously reported that hypoxia augments α-adrenergic contraction (hypoxic vasoconstriction, HVC) of skeletal arteries in rats. The underlying mechanism may involve hypoxic inhibition of endothelial nitric oxide synthase (eNOS) expressed in skeletal arterial myocytes (16). To further explore the novel role of muscular eNOS in the skeletal artery, we compared HVC in femoral arteries (FAs) from eNOS knockout (KO) mice with that from wild-type (WT) and heterozygous (HZ) mice. Immunohistochemical assays revealed that, in addition to endothelia, eNOS is also expressed in the medial layer of FAs, albeit at a much lower level. However, the medial eNOS signal was not evident in HZ FAs, despite strong expression in the endothelium; similar observations were made in WT carotid arteries (CAs). The amplitude of contraction induced by 1 μM phenylephrine (PhE) was greater in HZ than in WT FAs. Hypoxia (3% PO2) significantly augmented PhE-induced contraction in WT FAs but not in HZ or KO FAs. No HVC was observed in PhE-pretreated WT CAs. The NOS inhibitor nitro-L-arginine methyl ester (0.1 mM) also augmented PhE contraction in endothelium-denuded WT FAs but not in WT CAs. Inhibitors specific to neuronal NOS and inducible NOS did not augment PhE-induced contraction of WT FAs. NADPH oxidase 4 (NOX4) inhibitor (GKT137831, 5 μM), but not NOX2 inhibitor (apocynin, 100 μM), suppressed HVC. Consistent with the role of reactive oxygen species (ROS), HVC was also inhibited by pretreat-ment with tiron or polyethylene glycol-catalase. Taken together, these data suggest that the eNOS expressed in smooth muscle cells in FAs attenuates α-adrenergic vasoconstriction; this suppression is alleviated under hypoxia, which potentiates vasoconstriction in a NOX4/ ROS-dependent mechanism.
AB - We previously reported that hypoxia augments α-adrenergic contraction (hypoxic vasoconstriction, HVC) of skeletal arteries in rats. The underlying mechanism may involve hypoxic inhibition of endothelial nitric oxide synthase (eNOS) expressed in skeletal arterial myocytes (16). To further explore the novel role of muscular eNOS in the skeletal artery, we compared HVC in femoral arteries (FAs) from eNOS knockout (KO) mice with that from wild-type (WT) and heterozygous (HZ) mice. Immunohistochemical assays revealed that, in addition to endothelia, eNOS is also expressed in the medial layer of FAs, albeit at a much lower level. However, the medial eNOS signal was not evident in HZ FAs, despite strong expression in the endothelium; similar observations were made in WT carotid arteries (CAs). The amplitude of contraction induced by 1 μM phenylephrine (PhE) was greater in HZ than in WT FAs. Hypoxia (3% PO2) significantly augmented PhE-induced contraction in WT FAs but not in HZ or KO FAs. No HVC was observed in PhE-pretreated WT CAs. The NOS inhibitor nitro-L-arginine methyl ester (0.1 mM) also augmented PhE contraction in endothelium-denuded WT FAs but not in WT CAs. Inhibitors specific to neuronal NOS and inducible NOS did not augment PhE-induced contraction of WT FAs. NADPH oxidase 4 (NOX4) inhibitor (GKT137831, 5 μM), but not NOX2 inhibitor (apocynin, 100 μM), suppressed HVC. Consistent with the role of reactive oxygen species (ROS), HVC was also inhibited by pretreat-ment with tiron or polyethylene glycol-catalase. Taken together, these data suggest that the eNOS expressed in smooth muscle cells in FAs attenuates α-adrenergic vasoconstriction; this suppression is alleviated under hypoxia, which potentiates vasoconstriction in a NOX4/ ROS-dependent mechanism.
KW - Endothelial nitric oxide synthase
KW - Hypoxic vasoconstriction
KW - Skeletal artery
KW - Smooth muscle
UR - http://www.scopus.com/inward/record.url?scp=84987620719&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00061.2016
DO - 10.1152/ajpcell.00061.2016
M3 - Article
C2 - 27486092
AN - SCOPUS:84987620719
SN - 0363-6143
VL - 311
SP - C508-C517
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 3
ER -