Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise - A 3D finite element analysis

Wen Ming Chen, Jaeyoung Park, Seung Bum Park, Victor Phyau Wui Shim, Taeyong Lee

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot.The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner.Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations of 8.81° at the ankle, and a decreased metatarsophalangeal joint extension of 4.65°. The resulting peak pressure reductions at individual MTHs, however, may be site-specific and possibly dependent on foot structure, such as intrinsic alignment of the metatarsals. The relationships between muscular control, internal joint movements, and plantar load distributions are envisaged to have important clinical implications on tendo-Achilles lengthening procedures, and to provide surgeons with an understanding of the underlying mechanism for relieving forefoot pressure in diabetic patients suffering from ankle equinus contracture.

Original languageEnglish
Pages (from-to)1783-1789
Number of pages7
JournalJournal of Biomechanics
Volume45
Issue number10
DOIs
StatePublished - 26 Jun 2012

Bibliographical note

Funding Information:
This work was supported by a grant from the Temasek Defence Systems Institute, Singapore (Project number: TDSI/09-009/1A ).

Keywords

  • FEM
  • Foot model
  • Metatarsal head
  • Muscle stabilization
  • Plantar pressure

Fingerprint

Dive into the research topics of 'Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise - A 3D finite element analysis'. Together they form a unique fingerprint.

Cite this