RIPK1 Regulates Microglial Activation in Lipopolysaccharide-Induced Neuroinflammation and MPTP-Induced Parkinson’s Disease Mouse Models

Do Yeon Kim, Yea Hyun Leem, Jin Sun Park, Jung Eun Park, Jae Min Park, Jihee Lee Kang, Hee Sun Kim

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Increasing evidence suggests a pivotal role of receptor-interacting protein kinase 1 (RIPK1), an initiator of necroptosis, in neuroinflammation. However, the precise role of RIPK1 in microglial activation remains unclear. In the present study, we explored the role of RIPK1 in lipopolysaccharide (LPS)-induced neuroinflammation and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice by using RIPK1-specific inhibitors necrostatin-1 (Nec-1) and necrostatin-1 stable (Nec-1s). Nec-1/Nec-1s or RIPK1 siRNA inhibited the production of proinflammatory molecules and the phosphorylation of RIPK1-RIPK3-MLKL and cell death in LPS-induced inflammatory or LPS/QVD/BV6-induced necroptotic conditions of BV2 microglial cells. Detailed mechanistic studies showed that Nec-1/Nec-1s exerted anti-inflammatory effects by modulating AMPK, PI3K/Akt, MAPKs, and NF-κB signaling pathways in LPS-stimulated BV2 cells. Subsequent in vivo studies showed that Nec-1/Nec-1s inhibited microglial activation and proinflammatory gene expression by inhibiting the RIPK1 phosphorylation in the brains of LPS-injected mice. Furthermore, Nec-1/Nec-1s exert neuroprotective and anti-inflammatory effects in MPTP-induced PD mice. We found that p-RIPK1 is mainly expressed in microglia, and thus RIPK1 may contribute to neuroinflammation and subsequent cell death of dopaminergic neurons in MPTP-induced PD model mice. These data suggest that RIPK1 is a key regulator of microglial activation in LPS-induced neuroinflammation and MPTP-induced PD mice.

Original languageEnglish
Article number417
JournalCells
Volume12
Issue number3
DOIs
StatePublished - Feb 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • Parkinson’s disease
  • RIPK1
  • microglial activation
  • necroptosis
  • necrostatin-1
  • neuroinflammation
  • neuroprotection

Fingerprint

Dive into the research topics of 'RIPK1 Regulates Microglial Activation in Lipopolysaccharide-Induced Neuroinflammation and MPTP-Induced Parkinson’s Disease Mouse Models'. Together they form a unique fingerprint.

Cite this