Riemannian Geometric-based Meta Learning

June Young Park, Yu Mi Lee, Tae Joon Kim, Jang Hwan Choi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Meta-learning, or “learning to learn,” aims to enable models to quickly adapt to new tasks with minimal data. While traditional methods like Model-Agnostic Meta-Learning (MAML) optimize parameters in Euclidean space, they often struggle to capture complex learning dynamics, particularly in few-shot learning scenarios. To address this limitation, we propose Stiefel-MAML, which integrates Riemannian geometry by optimizing within the Stiefel manifold, a space that naturally enforces orthogonality constraints. By leveraging the geometric structure of the Stiefel manifold, we improve parameter expressiveness and enable more efficient optimization through Riemannian gradient calculations and retraction operations. We also introduce a novel kernel-based loss function defined on the Stiefel manifold, further enhancing the model’s ability to explore the parameter space. Experimental results on benchmark datasets—including Omniglot, Mini-ImageNet, FC-100, and CUB—demonstrate that Stiefel-MAML consistently outperforms traditional MAML, achieving superior performance across various few-shot learning tasks. Our findings highlight the potential of Riemannian geometry to enhance meta-learning, paving the way for future research on optimizing over different geometric structures.

Original languageEnglish
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages19839-19847
Number of pages9
Edition19
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - 11 Apr 2025
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: 25 Feb 20254 Mar 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number19
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period25/02/254/03/25

Bibliographical note

Publisher Copyright:
Copyright © 2025, Association for the Advancement of Artificia Intelligence (www.aaai.org). All rights reserved.

Fingerprint

Dive into the research topics of 'Riemannian Geometric-based Meta Learning'. Together they form a unique fingerprint.

Cite this