Abstract
Meta-learning, or “learning to learn,” aims to enable models to quickly adapt to new tasks with minimal data. While traditional methods like Model-Agnostic Meta-Learning (MAML) optimize parameters in Euclidean space, they often struggle to capture complex learning dynamics, particularly in few-shot learning scenarios. To address this limitation, we propose Stiefel-MAML, which integrates Riemannian geometry by optimizing within the Stiefel manifold, a space that naturally enforces orthogonality constraints. By leveraging the geometric structure of the Stiefel manifold, we improve parameter expressiveness and enable more efficient optimization through Riemannian gradient calculations and retraction operations. We also introduce a novel kernel-based loss function defined on the Stiefel manifold, further enhancing the model’s ability to explore the parameter space. Experimental results on benchmark datasets—including Omniglot, Mini-ImageNet, FC-100, and CUB—demonstrate that Stiefel-MAML consistently outperforms traditional MAML, achieving superior performance across various few-shot learning tasks. Our findings highlight the potential of Riemannian geometry to enhance meta-learning, paving the way for future research on optimizing over different geometric structures.
| Original language | English |
|---|---|
| Title of host publication | Special Track on AI Alignment |
| Editors | Toby Walsh, Julie Shah, Zico Kolter |
| Publisher | Association for the Advancement of Artificial Intelligence |
| Pages | 19839-19847 |
| Number of pages | 9 |
| Edition | 19 |
| ISBN (Electronic) | 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978 |
| DOIs | |
| State | Published - 11 Apr 2025 |
| Event | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States Duration: 25 Feb 2025 → 4 Mar 2025 |
Publication series
| Name | Proceedings of the AAAI Conference on Artificial Intelligence |
|---|---|
| Number | 19 |
| Volume | 39 |
| ISSN (Print) | 2159-5399 |
| ISSN (Electronic) | 2374-3468 |
Conference
| Conference | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 |
|---|---|
| Country/Territory | United States |
| City | Philadelphia |
| Period | 25/02/25 → 4/03/25 |
Bibliographical note
Publisher Copyright:Copyright © 2025, Association for the Advancement of Artificia Intelligence (www.aaai.org). All rights reserved.