TY - JOUR
T1 - Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil
AU - Kim, Jaisoo
AU - Kang, Seung Hee
AU - Min, Kyung Ah
AU - Cho, Kyung Suk
AU - Lee, In Sook
N1 - Funding Information:
This work was supported by the Korea Research Foundation Grant by Korea Government (HOERD, Basic Research Promotion Fund) (KRF-2005-050-D00007).
PY - 2006/11/1
Y1 - 2006/11/1
N2 - To know microbial activity and diesel-removal efficiency influencing through plant roots, we examined the effect of the rhizosphere on phytoremediation of diesel-contaminated soils by alfalfa (Medicago sativa L.). Pots were treated with and without diesel and allowed to stabilize for 7 weeks, at which time four experimental/control groups were prepared: (1) planted diesel-contaminated soil, (2) unplanted diesel-contaminated soil, (3) planted uncontaminated soil, and (4) unplanted uncontaminated soil. Samples of rhizosphere and bulk soils were separately taken from all planted pots. After 7 weeks of alfalfa growth from seeds, the removal efficiencies in rhizosphere and bulk soil samples were 82.5% and 36.5 59.4%, respectively. The total microbial activity was highest in diesel-contaminated rhizosphere soils. Significantly more culturable soil bacteria and hydrocarbon-degraders were found in diesel-contaminated rhizosphere soil versus unplanted and uncontaminated bulk soil, with a greater increase seen in hydrocarbon-degraders (172-fold) versus general soil bacteria (14-fold). DGGE (Denaturing Gel Gradient Electrophoresis) analysis revealed that the bacterial community structure was most highly influenced by the combined presence of diesel contamination and plant roots (39.13% similarity compared to the control), but that diesel contamination alone had a higher influence (42.31% similarity compared to the control) than the rhizosphere (50.00% similarity compared to the control). Sequence analysis and BLAST searches revealed that all samples were dominated by members of α -, γ -, δ - and ε -proteobacteria, and Chloroflexi. The rhizosphere samples additionally contained novel dominant members of α -proteobacteria and Cytophaga-Flexibacter-Bacteroides, while the diesel samples contained additional dominant α -proteobacteria and the rhizosphere plus diesel samples contained other ε -proteobacteria. Collectively, these findings indicate that the presence of plant roots (i.e., a rhizosphere) had a greater effect on bacterial activity in diesel contamination than did the absence of diesel contamination, whereas diesel contamination had a greater effect on bacterial community structure. These novel findings provide new insight into the mechanisms of phytoremediation.
AB - To know microbial activity and diesel-removal efficiency influencing through plant roots, we examined the effect of the rhizosphere on phytoremediation of diesel-contaminated soils by alfalfa (Medicago sativa L.). Pots were treated with and without diesel and allowed to stabilize for 7 weeks, at which time four experimental/control groups were prepared: (1) planted diesel-contaminated soil, (2) unplanted diesel-contaminated soil, (3) planted uncontaminated soil, and (4) unplanted uncontaminated soil. Samples of rhizosphere and bulk soils were separately taken from all planted pots. After 7 weeks of alfalfa growth from seeds, the removal efficiencies in rhizosphere and bulk soil samples were 82.5% and 36.5 59.4%, respectively. The total microbial activity was highest in diesel-contaminated rhizosphere soils. Significantly more culturable soil bacteria and hydrocarbon-degraders were found in diesel-contaminated rhizosphere soil versus unplanted and uncontaminated bulk soil, with a greater increase seen in hydrocarbon-degraders (172-fold) versus general soil bacteria (14-fold). DGGE (Denaturing Gel Gradient Electrophoresis) analysis revealed that the bacterial community structure was most highly influenced by the combined presence of diesel contamination and plant roots (39.13% similarity compared to the control), but that diesel contamination alone had a higher influence (42.31% similarity compared to the control) than the rhizosphere (50.00% similarity compared to the control). Sequence analysis and BLAST searches revealed that all samples were dominated by members of α -, γ -, δ - and ε -proteobacteria, and Chloroflexi. The rhizosphere samples additionally contained novel dominant members of α -proteobacteria and Cytophaga-Flexibacter-Bacteroides, while the diesel samples contained additional dominant α -proteobacteria and the rhizosphere plus diesel samples contained other ε -proteobacteria. Collectively, these findings indicate that the presence of plant roots (i.e., a rhizosphere) had a greater effect on bacterial activity in diesel contamination than did the absence of diesel contamination, whereas diesel contamination had a greater effect on bacterial community structure. These novel findings provide new insight into the mechanisms of phytoremediation.
KW - Alfalfa
KW - Bacterial community structure
KW - Bulk
KW - DGGE (Denaturing Gel Gradient Electrophoresis)
KW - Diesel
KW - Medicago sativa L.
KW - Microbial activity
KW - Phytoremediation
KW - Rhizosphere
KW - Soil
UR - http://www.scopus.com/inward/record.url?scp=33749005098&partnerID=8YFLogxK
U2 - 10.1080/10934520600927658
DO - 10.1080/10934520600927658
M3 - Article
C2 - 17000542
AN - SCOPUS:33749005098
SN - 1093-4529
VL - 41
SP - 2503
EP - 2516
JO - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
JF - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
IS - 11
ER -