Revisiting the iris effect of tropical cirrus clouds with trmm and a-train satellite data

Yong Sang Choi, Won Moo Kim, Sang Wook Yeh, Hirohiko Masunaga, Min Jae Kwon, Hyun Su Jo, Lei Huang

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Just as the iris of human eye controls the light influx (iris effect), tropical anvil cirrus clouds may regulate the Earth’s surface warming by controlling outgoing longwave radiation. This study examines this possible effect with monthly satellite observations such as Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer cirrus fraction, and Clouds and the Earth’s Radiant Energy System top-of-the-atmosphere radiative fluxes averaged over different tropical domains from March 2000 to October 2014. To confirm that high-level cirrus is relevant to this study, Cloud-Aerosol Lidar with Orthogonal Polarization high cloud observations were also analyzed from June 2006 to December 2015. Our analysis revealed that the increase in sea surface temperature in the tropical western Pacific tends to concentrate convective cloud systems. This concentration effect very likely induces the significant reduction of both stratiform rain rate and cirrus fraction, without appreciable change in the convective rain rate. This reduction of stratiform rain rate and cirrus fraction cannot be found over its subregion or the tropical eastern Pacific, where the concentration effect of anvil cirrus is weak. Consistently, over the tropical western Pacific, the higher ratio of convective rain rate to total rain rate (i.e., precipitation efficiency) significantly correlates with warmer sea surface temperature and lower cirrus fraction. The reduced cirrus eventually increased outgoing longwave radiation to a greater degree than absorbed solar radiation. Finally, the negative relationship between precipitation efficiency and cirrus fraction tends to correspond to a low global equilibrium climate sensitivity in the models in the Coupled Model Intercomparison Project Phase 5. This suggests that tropical anvil cirrus clouds exert a negative climate feedback in strong association with precipitation efficiency.

Original languageEnglish
Pages (from-to)5917-5931
Number of pages15
JournalJournal of Geophysical Research C: Oceans
Volume122
Issue number11
DOIs
StatePublished - 2017

Bibliographical note

Publisher Copyright:
© 2017. American Geophysical Union. All Rights Reserved.

Fingerprint

Dive into the research topics of 'Revisiting the iris effect of tropical cirrus clouds with trmm and a-train satellite data'. Together they form a unique fingerprint.

Cite this