Abstract
Recently, emerging nanoadsorbents, such as graphene/(reduced) graphene oxide (GO)-based nanomaterials, have been prepared and used in different environmental applications, particularly water purification. This study is a review of the research progress on adsorption mechanisms for bisphenol A removal, which is significantly influenced by the physicochemical properties of various graphene/(reduced) GO-based nanomaterials and water quality conditions. In addition, this study presents the beneficial knowledge for the application of these nanomaterials for water purification. Results on the removal of bisphenol A and several other comparable contaminants using various graphene/(reduced) GO-based nanoadsorbents suggest that their removal can vary significantly depending on the properties of compounds or adsorbents and water chemistry conditions. Therefore, the bisphenol A adsorption performance of these nanomaterials is discussed: (i) to evaluate the overall adsorption capacities of various graphene/(reduced) GO-based nanomaterials based on the properties of nanomaterials and comparable contaminants; (ii) to summarize the influences of main water quality factors, such as pH, temperature, background ions/alkalinity, and natural organic matter or other organics, on adsorption; (iii) to discuss the key mechanisms that affect adsorption on these nanomaterials; and (iv) to describe the possible desorption and reusability of these carbon-based nanomaterials.
Original language | English |
---|---|
Pages (from-to) | 231-249 |
Number of pages | 19 |
Journal | Separation and Purification Reviews |
Volume | 53 |
Issue number | 3 |
DOIs | |
State | Published - 2024 |
Bibliographical note
Publisher Copyright:© 2023 Taylor & Francis Group, LLC.
Keywords
- Adsorption
- bisphenol A
- graphene oxide
- nanomaterials