TY - JOUR
T1 - Relaxation and coarsening dynamics in superconducting arrays
AU - Choi, M. Y.
AU - Jeon, Gun Sang
AU - Lee, Sung Jong
PY - 2003
Y1 - 2003
N2 - We investigate the nonequilibrium coarsening dynamics in two-dimensional overdamped superconducting arrays under zero external current, where Ohmic dissipation occurs on junctions between superconducting islands through uniform resistance. The nonequilibrium relaxation of the unfrustrated array and also of the fully frustrated array, quenched to low-temperature ordered states or quasiordered ones, is dominated by characteristic features of coarsening processes via decay of point and line defects, respectively. In the case of unfrustrated arrays, it is argued that due to finiteness of the friction constant for a vortex (in the limit of large spatial extent of the vortex), the typical length scale grows as (formula presented) accompanied by the number of point vortices decaying as (formula presented) This is in contrast with the case that dominant dissipation occurs between each island and the substrate, where the friction constant diverges logarithmically and the length scale exhibits diffusive growth with a logarithmic correction term. We perform extensive numerical simulations, to obtain results in reasonable agreement. In the case of fully frustrated arrays, the domain growth of Ising-like chiral order exhibits the low-temperature behavior (formula presented) with the growth exponent (formula presented) apparently showing a strong temperature dependence in the low-temperature limit.
AB - We investigate the nonequilibrium coarsening dynamics in two-dimensional overdamped superconducting arrays under zero external current, where Ohmic dissipation occurs on junctions between superconducting islands through uniform resistance. The nonequilibrium relaxation of the unfrustrated array and also of the fully frustrated array, quenched to low-temperature ordered states or quasiordered ones, is dominated by characteristic features of coarsening processes via decay of point and line defects, respectively. In the case of unfrustrated arrays, it is argued that due to finiteness of the friction constant for a vortex (in the limit of large spatial extent of the vortex), the typical length scale grows as (formula presented) accompanied by the number of point vortices decaying as (formula presented) This is in contrast with the case that dominant dissipation occurs between each island and the substrate, where the friction constant diverges logarithmically and the length scale exhibits diffusive growth with a logarithmic correction term. We perform extensive numerical simulations, to obtain results in reasonable agreement. In the case of fully frustrated arrays, the domain growth of Ising-like chiral order exhibits the low-temperature behavior (formula presented) with the growth exponent (formula presented) apparently showing a strong temperature dependence in the low-temperature limit.
UR - http://www.scopus.com/inward/record.url?scp=85038282712&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.67.014501
DO - 10.1103/PhysRevB.67.014501
M3 - Article
AN - SCOPUS:85038282712
SN - 1098-0121
VL - 67
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 1
ER -