Regulation of aldosterone secretion by Ca v 1.3

Catherine B. Xie, Lalarukh Haris Shaikh, Sumedha Garg, Gizem Tanriver, Ada E.D. Teo, Junhua Zhou, Carmela Maniero, Wanfeng Zhao, Soosung Kang, Richard B. Silverman, Elena A.B. Azizan, Morris J. Brown

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) Ca V 1.3. Using a novel antagonist of Ca V 1.3, compound 8, we investigated the role of Ca V 1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, Ca V 1.2, over Ca V 1.3. In H295R cells transfected with wild-type or mutant Ca V 1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 1/4M of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 1/4M). Selective Ca V 1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of Ca V 1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of Ca V 1.3.

Original languageEnglish
Article number24697
JournalScientific Reports
StatePublished - 21 Apr 2016


Dive into the research topics of 'Regulation of aldosterone secretion by Ca v 1.3'. Together they form a unique fingerprint.

Cite this