TY - JOUR
T1 - Regulation of aerobic and anaerobic D-malate metabolism of Escherichia coli by the LysR-type regulator DmlR (YeaT)
AU - Lukas, Hanna
AU - Reimann, Julia
AU - Kim, Ok Bin
AU - Grimpo, Jan
AU - Unden, Gottfried
PY - 2010/5
Y1 - 2010/5
N2 - Escherichia coli K-12 is able to grow under aerobic conditions on D-malate using DctA for D-malate uptake and the D-malate dehydrogenase DmlA (formerly YeaU) for converting D-malate to pyruvate. Induction of dmlA encoding DmlA required an intact dmlR (formerly yeaT) gene, which encodes DmlR, a LysR-type transcriptional regulator. Induction of dmlA by DmlR required the presence of D-malate or L- or meso-tartrate, but only D-malate supported aerobic growth. The regulator of general C4-dicarboxylate metabolism (DcuS-DcuR two-component system) had some effect on dmlA expression. The anaerobic L-tartrate regulator TtdR or the oxygen sensors ArcB-ArcA and FNR did not have a major effect on dmlA expression. DmlR has a high level of sequence identity (49%) with TtdR, the L- and meso-tartrate-specific regulator of L-tartrate fermentation in E. coli. dmlA was also expressed at high levels under anaerobic conditions, and the bacteria had D-malate dehydrogenase activity. These bacteria, however, were not able to grow on D-malate since the anaerobic pathway for D-malate degradation has a predicted yield of ≤0 ATP/mol D-malate. Slow anaerobic growth on D-malate was observed when glycerol was also provided as an electron donor, and D-malate was used in fumarate respiration. The expression of dmlR is subject to negative autoregulation. The network for regulation and coordination of the central and peripheral pathways for C4- dicarboxylate metabolism by the regulators DcuS-DcuR, DmlR, and TtdR is discussed.
AB - Escherichia coli K-12 is able to grow under aerobic conditions on D-malate using DctA for D-malate uptake and the D-malate dehydrogenase DmlA (formerly YeaU) for converting D-malate to pyruvate. Induction of dmlA encoding DmlA required an intact dmlR (formerly yeaT) gene, which encodes DmlR, a LysR-type transcriptional regulator. Induction of dmlA by DmlR required the presence of D-malate or L- or meso-tartrate, but only D-malate supported aerobic growth. The regulator of general C4-dicarboxylate metabolism (DcuS-DcuR two-component system) had some effect on dmlA expression. The anaerobic L-tartrate regulator TtdR or the oxygen sensors ArcB-ArcA and FNR did not have a major effect on dmlA expression. DmlR has a high level of sequence identity (49%) with TtdR, the L- and meso-tartrate-specific regulator of L-tartrate fermentation in E. coli. dmlA was also expressed at high levels under anaerobic conditions, and the bacteria had D-malate dehydrogenase activity. These bacteria, however, were not able to grow on D-malate since the anaerobic pathway for D-malate degradation has a predicted yield of ≤0 ATP/mol D-malate. Slow anaerobic growth on D-malate was observed when glycerol was also provided as an electron donor, and D-malate was used in fumarate respiration. The expression of dmlR is subject to negative autoregulation. The network for regulation and coordination of the central and peripheral pathways for C4- dicarboxylate metabolism by the regulators DcuS-DcuR, DmlR, and TtdR is discussed.
UR - http://www.scopus.com/inward/record.url?scp=77952070971&partnerID=8YFLogxK
U2 - 10.1128/JB.01665-09
DO - 10.1128/JB.01665-09
M3 - Article
C2 - 20233924
AN - SCOPUS:77952070971
SN - 0021-9193
VL - 192
SP - 2503
EP - 2511
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 10
ER -