Redox-responsive sorbents and mediators for electrochemically based CO2 capture

Jin Soo Kang, Seoni Kim, T. Alan Hatton

Research output: Contribution to journalReview articlepeer-review

26 Scopus citations


Global warming and climate change caused by an ever-increasing accumulation of atmospheric CO2 are reaching alarming levels. In order to address this issue, significant research effort has been dedicated to the development of carbon capture processes for sequestration or utilization of CO2. Current technologies rely on energy-intensive temperature- or pressure-swing of CO2 sorbents, limiting the economic feasibility of the process. Herein, we review recent advances in electrochemically mediated CO2 capture and release. Specifically, redox-active sorbents and mediators provide new opportunities in separation of CO2 by significantly reducing the energy requirements and widening the scope for system modifications. In particular, strategies for electrochemically mediated regeneration of sorbents in conventional processes, direct capture and release of CO2 by exploitation of redox-active complexes, and the outlook for electrochemically based carbon capture are covered.

Original languageEnglish
Article number100504
JournalCurrent Opinion in Green and Sustainable Chemistry
StatePublished - Oct 2021

Bibliographical note

Publisher Copyright:
© 2021 Elsevier B.V.


Dive into the research topics of 'Redox-responsive sorbents and mediators for electrochemically based CO2 capture'. Together they form a unique fingerprint.

Cite this