Reconfigurable Dipole-Induced Resistive Switching of MoS2 Thin Layers on Nb:SrTiO3

Woo Young Yoon, Hye Jin Jin, William Jo

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The controllable band gap and charge-trapping capability of MoS2 render it suitable for use in the fabrication of various electrical devices with high-k dielectric oxides. In this study, we investigated reconfigurable resistance states in a MoS2/Nb:SrTiO3 heterostructure by using conductive atomic force microscopy. Low-resistance and high-resistance states were observed in all MoS2 because of barrier height modification resulting from redistribution of charge and oxygen vacancies in the vicinity of interfaces. In a thin layer of the MoS2 film, the carrier density was high, and layer-dependent transport properties appeared because of the charge separation in MoS2. The hysteresis and switching voltage of the MoS2/Nb:SrTiO3 heterostructure could be varied by controlling the number of layers of MoS2.

Original languageEnglish
Pages (from-to)46344-46349
Number of pages6
JournalACS Applied Materials and Interfaces
Volume11
Issue number49
DOIs
StatePublished - 11 Dec 2019

Bibliographical note

Funding Information:
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Technology, and ICT (NRF-2018R1A2B2003607) and the Ministry of Education (NRF-2018R1A6A1A03025340), Republic of Korea. This work was also supported by the Ewha Womans University Research Grant of 2019.

Publisher Copyright:
© 2019 American Chemical Society.

Keywords

  • MoS
  • MoS-oxide heterostructure
  • high- k dielectrics
  • induced dipole
  • reconfigurability
  • resistive switching

Fingerprint

Dive into the research topics of 'Reconfigurable Dipole-Induced Resistive Switching of MoS2 Thin Layers on Nb:SrTiO3'. Together they form a unique fingerprint.

Cite this