Receptonics-based real-time monitoring of bacterial volatiles for onsite fire blight diagnosis

Kyung Ho Kim, Jai Eun An, Myoungjoo Riu, Jin Soo Son, Sung Eun Seo, Hongki Kim, Gyeong Ji Kim, Soohyun Lee, Jin Yoo, Tae Shin Park, Yong Hwan Lee, Tai Hyun Park, Choong Min Ryu, Oh Seok Kwon

Research output: Contribution to journalArticlepeer-review

Abstract

Fire blight, caused by the bacterium Erwinia amylovora, is a rapidly progressing and highly contagious disease of apple and pear, which leads to great economic losses with high recovery fees. To control fire blight, the infected trees are either treated with antibiotics or, in some countries, buried. To minimize the damage caused by E. amylovora and to manage its spread to other trees and orchards, early diagnosis of fire blight is critical. The direct extraction of E. amylovora cells or DNA from infected tissues is a laborious and time-consuming process, and a non-destructive diagnosis method has not yet been applied. In this study, we employed receptonics, a nanotechnology platform equipped with a receptor protein that perceives airborne bacterial signals and converts them into electronic signals, for onsite fire blight diagnosis. Two bacterial volatiles, 2,3-butanediol and 2-phenylethyl alcohol, were used as E. amylovora biomarkers both in vitro and in situ. To design receptor protein for identifying the target biomarkers, the bioprobe, nanodiscs human olfactory receptor family 1 subfamily D member 5 (hOR1D5), and Drosophila melanogaster or9a were engineered and fabricated. Our portable receptonics platform was able to detect both bacterial volatiles at concentrations as low as 10 pM within 10 s under field conditions. Thus, our results suggest that the receptonics platform could be used as a non-destructive diagnostic tool for the onsite, rapid, and accurate identification of plant diseases.

Original languageEnglish
Article number136337
JournalSensors and Actuators, B: Chemical
Volume419
DOIs
StatePublished - 15 Nov 2024

Bibliographical note

Publisher Copyright:
© 2024 Elsevier B.V.

Keywords

  • Biomarker
  • Bioprobe
  • Fire blight
  • Plant diseases
  • Portable
  • Receptonics

Fingerprint

Dive into the research topics of 'Receptonics-based real-time monitoring of bacterial volatiles for onsite fire blight diagnosis'. Together they form a unique fingerprint.

Cite this