@inproceedings{e58c818797f9455789ea45a97049f249,
title = "Real-time intrusion detection system based on Self-Organized maps and feature correlations",
abstract = "Detecting network intrusion has been not only critical but also difficult in the network security research area. Traditional supervised learning techniques are not appropriate to detect anomalous behaviors and new attacks because of temporal changes in network intrusion patterns and characteristics. Therefore, unsupervised learning techniques such as SOM (Self-Organizing Map) are more appropriate for anomaly detection. In this paper, we propose a real-time intrusion detection system based on SOM that groups similar data and visualize their clusters. Our system labels the map produced by SOM using correlations between features. We experiments our system with KDD Cup 1999 data set. Our system yields the reasonable misclassification rates and takes 0.5 seconds to decide whether a behavior is normal or attack.",
keywords = "Correlations, Countermeasures, Network security, Real time intrusion detection system, Supervised hearing, Unsupervised learning",
author = "Hayoung Oh and Kijoon Chae",
year = "2008",
doi = "10.1109/ICCIT.2008.362",
language = "English",
isbn = "9780769534077",
series = "Proceedings - 3rd International Conference on Convergence and Hybrid Information Technology, ICCIT 2008",
pages = "1154--1158",
booktitle = "Proceedings - 3rd International Conference on Convergence and Hybrid Information Technology, ICCIT 2008",
note = "3rd International Conference on Convergence and Hybrid Information Technology, ICCIT 2008 ; Conference date: 11-11-2008 Through 13-11-2008",
}