TY - JOUR
T1 - Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney
AU - Ha, Hunjoo
AU - Lee, Hi Bahl
PY - 2005/10
Y1 - 2005/10
N2 - Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) in the kidney. Reactive oxygen species (ROS) play a central role in the ECM synthesis and degradation in the glomeruli and tubulointerstitium leading to renal fibrosis. High glucose (HG) induces cellular ROS through protein kinase C (PKC)-dependent activation of NADPH oxidase and through mitochondrial metabolism. ROS thus generated activate signal transduction cascade (PKC, mitogen-activated protein kinases, and Janus kinase/signal transducers and activators of transcription) and transcription factors (nuclear factor-κB, activated protein-1, and specificity protein-1), up-regulate transforming growth factor-β1 (TGF-β1), angiotensin II (Ang II), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor-1 (PAI-1) gene and protein expression, and promote formation of advanced glycation end-products (AGE). PKC, TGF-β1, Ang II, and AGE also induce cellular ROS and signal through ROS leading to enhanced ECM synthesis. NF-κB-MCP-1 pathway is activated by ROS and promotes monocyte recruitment and profibrotic process in the kidney. HG- and TGF-β1-induced PAI-1 up-regulation is mediated by ROS and contribute to ECM accumulation via suppression of plasmin ativity. TGF-β1-induced myofibroblast transformation of renal tubular epithelial cells (epithelial-mesenchymal transition) is also mediated by ROS and contribute to tubulointerstitial fibrosis. In summary, ROS transduce and amplify glucose signalling in renal cells under high glucose environment and play a critical role in excessive ECM deposition in the diabetic kidney. A better understanding of ROS production and removal will allow more effective therapeutic strategies in diabetic renal and other vascular complications.
AB - Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) in the kidney. Reactive oxygen species (ROS) play a central role in the ECM synthesis and degradation in the glomeruli and tubulointerstitium leading to renal fibrosis. High glucose (HG) induces cellular ROS through protein kinase C (PKC)-dependent activation of NADPH oxidase and through mitochondrial metabolism. ROS thus generated activate signal transduction cascade (PKC, mitogen-activated protein kinases, and Janus kinase/signal transducers and activators of transcription) and transcription factors (nuclear factor-κB, activated protein-1, and specificity protein-1), up-regulate transforming growth factor-β1 (TGF-β1), angiotensin II (Ang II), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor-1 (PAI-1) gene and protein expression, and promote formation of advanced glycation end-products (AGE). PKC, TGF-β1, Ang II, and AGE also induce cellular ROS and signal through ROS leading to enhanced ECM synthesis. NF-κB-MCP-1 pathway is activated by ROS and promotes monocyte recruitment and profibrotic process in the kidney. HG- and TGF-β1-induced PAI-1 up-regulation is mediated by ROS and contribute to ECM accumulation via suppression of plasmin ativity. TGF-β1-induced myofibroblast transformation of renal tubular epithelial cells (epithelial-mesenchymal transition) is also mediated by ROS and contribute to tubulointerstitial fibrosis. In summary, ROS transduce and amplify glucose signalling in renal cells under high glucose environment and play a critical role in excessive ECM deposition in the diabetic kidney. A better understanding of ROS production and removal will allow more effective therapeutic strategies in diabetic renal and other vascular complications.
KW - Diabetic kidney
KW - Glucose signalling
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=28544448737&partnerID=8YFLogxK
U2 - 10.1111/j.1440-1797.2005.00448.x
DO - 10.1111/j.1440-1797.2005.00448.x
M3 - Article
C2 - 16174288
AN - SCOPUS:28544448737
SN - 1320-5358
VL - 10
SP - S7-S10
JO - Nephrology
JF - Nephrology
IS - SUPPL. 2
ER -