Rapid bone regeneration by Escherichia coli-derived recombinant human bone morphogenetic protein-2 loaded on a hydroxyapatite carrier in the rabbit calvarial defect model

Chung Hoon Chung, You Kyoung Kim, Jung Seok Lee, Ui Won Jung, Eun Kyoung Pang, Seong Ho Choi

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Background: The aim of this study was to determine the osteoconductivity of hydroxyapatite particles (HAP) as a carrier for Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2). Two 8-mm diameter bicortical calvarial defects were created in each of 20 rabbits. One of each pair of defects was randomly assigned to be filled with HAP only (HAP group) or ErhBMP-2 loaded HAP (ErhBMP-2/HAP group), while the other defect was left untreated (control group). The animals were killed after either 2 weeks (n = 10) or 8 weeks (n = 10) of healing, and histological, histomorphometric, and tomographic analyses were performed. Results: All experimental sites showed uneventful healing during the postoperative healing period. In both histomorphometric and tomographic analyses, the new bone area or volume of the ErhBMP-2/HAP group was significantly greater than that of the HAP and control groups at 2 weeks (p < 0.05). However, at 8 weeks, no significant difference in new bone area or volume was observed between the ErhBMP-2/HAP and HAP groups. The total augmented area or volume was not significantly different between the ErhBMP-2/HAP and HAP groups at 2 and 8 weeks. Conclusions: Combining ErhBMP-2 with HAP could significantly promote rapid initial new bone formation. Moreover, HAP graft could increase new bone formation and space maintenance, therefore it might be one of the effective carriers of ErhBMP-2.

Original languageEnglish
Article number17
JournalBiomaterials Research
Volume19
Issue number1
DOIs
StatePublished - 2015

Bibliographical note

Publisher Copyright:
© 2015 Chung et al.

Keywords

  • Bone regeneration
  • Calvarial intraosseous defect model
  • Escherichia coli-derived recombinant human bone
  • Hydroxyapatite
  • Morphogenetic protein-2
  • Tissue engineering

Fingerprint

Dive into the research topics of 'Rapid bone regeneration by Escherichia coli-derived recombinant human bone morphogenetic protein-2 loaded on a hydroxyapatite carrier in the rabbit calvarial defect model'. Together they form a unique fingerprint.

Cite this