Abstract
Radiative cooling of the thermally isolated system is investigated in KAGRA gravitational wave telescope. KAGRA is a laser interferometer-based detector and main mirrors constituting optical cavities are cool down to 20K to reduce noises caused by the thermal fluctuation. The mirror is suspended with the multi-stage pendulum to isolate any vibration. Therefore, this mirror suspension system has few heat links to reduce vibration injection. Thus, this system is mainly cooled down with thermal radiation. In order to understand the process of radiative cooling of the mirror, we analyzed cooling curve based on mass and specific heat. As a result, it was newly found that a cryogenic part called "cryogenic duct-shield"seems to have large contribution in the beginning of the mirror cooling. This finding will help to design new cooling system for the next generation cryogenic gravitational wave detector.
Original language | English |
---|---|
Article number | 012002 |
Journal | Journal of Physics: Conference Series |
Volume | 1857 |
Issue number | 1 |
DOIs | |
State | Published - 19 Apr 2021 |
Event | 10th Asian Conference on Applied Superconductivity and Cryogenics, ACASC 2020, 2nd International Cryogenic Materials Conference in Asia, Asian-ICMC 2020 and CSSJ Joint Conference - Okinawa, Japan Duration: 6 Jan 2020 → 9 Jan 2020 |
Access to Document
Fingerprint
Dive into the research topics of 'Radiative Cooling of the Thermally Isolated System in KAGRA Gravitational Wave Telescope'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Radiative Cooling of the Thermally Isolated System in KAGRA Gravitational Wave Telescope. / Akutsu, T.; Ando, M.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Aso, Y.; Bae, S. W.; Bae, Y. B.; Baiotti, L.; Bajpai, R.; Barton, M. A.; Cannon, K.; Capocasa, E.; Chan, M. L.; Chen, C. S.; Chen, K. H.; Chen, Y. R.; Chu, H. Y.; Chu, Y. K.; Eguchi, S.; Enomoto, Y.; Flaminio, R.; Fujii, Y.; Fukunaga, M.; Fukushima, M.; Ge, G. G.; Hagiwara, A.; Haino, S.; Hasegawa, K.; Hayakawa, H.; Hayama, K.; Himemoto, Y.; Hiranuma, Y.; Hirata, N.; Hirose, E.; Hong, Z.; Hsieh, B. H.; Huang, G. Z.; Huang, P. W.; Huang, Y. J.; Ikenoue, B.; Imam, S.; Inayoshi, K.; Inoue, Y.; Ioka, K.; Itoh, Y.; Izumi, K.; Jung, K.; Jung, P.; Kajita, T.; Kamiizumi, M.; Kanda, N.; Kang, G. W.; Kawaguchi, K.; Kawai, N.; Kawasaki, T.; Kim, C.; Kim, J.; Kim, W.; Kim, Y. M.; Kimura, N.; Kita, N.; Kitazawa, H.; Kojima, Y.; Kokeyama, K.; Komori, K.; Kong, A. K.H.; Kotake, K.; Kozakai, C.; Kozu, R.; Kumar, R.; Kume, J.; Kuo, C. M.; Kuo, H. S.; Kuroyanagi, S.; Kusayanagi, K.; Kwak, K.; Lee, H. K.; Lee, H. W.; Lee, R. K.; Leonardi, M.; Lin, C. Y.; Lin, F. L.; Lin, L. C.C.; Liu, G. C.; Luo, L. W.; Marchio, M.; Michimura, Y.; Mio, N.; Miyakawa, O.; Miyamoto, A.; Miyazaki, Y.; Miyo, K.; Miyoki, S.; Morisaki, S.; Moriwaki, Y.; Nagano, K.; Nagano, S.; Nakamura, K.; Nakano, H.; Nakano, M.; Nakashima, R.; Narikawa, T.; Negishi, R.; Ni, W. T.; Nishizawa, A.; Obuchi, Y.; Ogaki, W.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, K.; Oohara, K.; Ooi, C. P.; Oshino, S.; Pan, K. C.; Pang, H. F.; Park, J.; Peiia Arellano, F. E.; Pinto, I.; Sago, N.; Saito, S.; Saito, Y.; Sakai, K.; Sakai, Y.; Sakuno, Y.; Sato, S.; Sato, T.; Sawada, T.; Sekiguchi, T.; Sekiguchi, Y.; Shibagaki, S.; Shimizu, R.; Shimoda, T.; Shimode, K.; Shinkai, H.; Shishido, T.; Shoda, A.; Somiya, K.; Son, E. J.; Sotani, H.; Sugimoto, R.; Suzuki, T.; Suzuki, T.; Tagoshi, H.; Takahashi, H.; Takahashi, R.; Takamori, A.; Takano, S.; Takeda, H.; Takeda, M.; Tanaka, H.; Tanaka, K.; Tanaka, K.; Tanaka, T.; Tanaka, T.; Tanioka, S.; Tapia San Martin, E. N.; Telada, S.; Tomaru, T.; Tomigami, Y.; Tomura, T.; Travasso, F.; Trozzo, L.; Tsang, T. T.L.; Tsubono, K.; Tsuchida, S.; Tsuzuki, T.; Tuyenbayev, D.; Uchikata, N.; Uchiyama, T.; Ueda, A.; Uehara, T.; Ueno, K.; Ueshima, G.; Uraguchi, F.; Ushiba, T.; Putten, M. H.P.M.Van; Vocca, H.; Wang, J.; Wu, C. M.; Wu, H. C.; Wu, S. R.; Xu, W. R.; Yamada, T.; Yamamoto, K.; Yamamoto, K.; Yamamoto, T.; Yokogawa, K.; Yokoyama, J.; Yokozawa, T.; Yoshioka, T.; Yuzurihara, H.; Zeidler, S.; Zhao, Y.; Zhu, Z. H.
In: Journal of Physics: Conference Series, Vol. 1857, No. 1, 012002, 19.04.2021.Research output: Contribution to journal › Conference article › peer-review
TY - JOUR
T1 - Radiative Cooling of the Thermally Isolated System in KAGRA Gravitational Wave Telescope
AU - Akutsu, T.
AU - Ando, M.
AU - Arai, K.
AU - Arai, Y.
AU - Araki, S.
AU - Araya, A.
AU - Aritomi, N.
AU - Aso, Y.
AU - Bae, S. W.
AU - Bae, Y. B.
AU - Baiotti, L.
AU - Bajpai, R.
AU - Barton, M. A.
AU - Cannon, K.
AU - Capocasa, E.
AU - Chan, M. L.
AU - Chen, C. S.
AU - Chen, K. H.
AU - Chen, Y. R.
AU - Chu, H. Y.
AU - Chu, Y. K.
AU - Eguchi, S.
AU - Enomoto, Y.
AU - Flaminio, R.
AU - Fujii, Y.
AU - Fukunaga, M.
AU - Fukushima, M.
AU - Ge, G. G.
AU - Hagiwara, A.
AU - Haino, S.
AU - Hasegawa, K.
AU - Hayakawa, H.
AU - Hayama, K.
AU - Himemoto, Y.
AU - Hiranuma, Y.
AU - Hirata, N.
AU - Hirose, E.
AU - Hong, Z.
AU - Hsieh, B. H.
AU - Huang, G. Z.
AU - Huang, P. W.
AU - Huang, Y. J.
AU - Ikenoue, B.
AU - Imam, S.
AU - Inayoshi, K.
AU - Inoue, Y.
AU - Ioka, K.
AU - Itoh, Y.
AU - Izumi, K.
AU - Jung, K.
AU - Jung, P.
AU - Kajita, T.
AU - Kamiizumi, M.
AU - Kanda, N.
AU - Kang, G. W.
AU - Kawaguchi, K.
AU - Kawai, N.
AU - Kawasaki, T.
AU - Kim, C.
AU - Kim, J.
AU - Kim, W.
AU - Kim, Y. M.
AU - Kimura, N.
AU - Kita, N.
AU - Kitazawa, H.
AU - Kojima, Y.
AU - Kokeyama, K.
AU - Komori, K.
AU - Kong, A. K.H.
AU - Kotake, K.
AU - Kozakai, C.
AU - Kozu, R.
AU - Kumar, R.
AU - Kume, J.
AU - Kuo, C. M.
AU - Kuo, H. S.
AU - Kuroyanagi, S.
AU - Kusayanagi, K.
AU - Kwak, K.
AU - Lee, H. K.
AU - Lee, H. W.
AU - Lee, R. K.
AU - Leonardi, M.
AU - Lin, C. Y.
AU - Lin, F. L.
AU - Lin, L. C.C.
AU - Liu, G. C.
AU - Luo, L. W.
AU - Marchio, M.
AU - Michimura, Y.
AU - Mio, N.
AU - Miyakawa, O.
AU - Miyamoto, A.
AU - Miyazaki, Y.
AU - Miyo, K.
AU - Miyoki, S.
AU - Morisaki, S.
AU - Moriwaki, Y.
AU - Nagano, K.
AU - Nagano, S.
AU - Nakamura, K.
AU - Nakano, H.
AU - Nakano, M.
AU - Nakashima, R.
AU - Narikawa, T.
AU - Negishi, R.
AU - Ni, W. T.
AU - Nishizawa, A.
AU - Obuchi, Y.
AU - Ogaki, W.
AU - Oh, J. J.
AU - Oh, S. H.
AU - Ohashi, M.
AU - Ohishi, N.
AU - Ohkawa, M.
AU - Okutomi, K.
AU - Oohara, K.
AU - Ooi, C. P.
AU - Oshino, S.
AU - Pan, K. C.
AU - Pang, H. F.
AU - Park, J.
AU - Peiia Arellano, F. E.
AU - Pinto, I.
AU - Sago, N.
AU - Saito, S.
AU - Saito, Y.
AU - Sakai, K.
AU - Sakai, Y.
AU - Sakuno, Y.
AU - Sato, S.
AU - Sato, T.
AU - Sawada, T.
AU - Sekiguchi, T.
AU - Sekiguchi, Y.
AU - Shibagaki, S.
AU - Shimizu, R.
AU - Shimoda, T.
AU - Shimode, K.
AU - Shinkai, H.
AU - Shishido, T.
AU - Shoda, A.
AU - Somiya, K.
AU - Son, E. J.
AU - Sotani, H.
AU - Sugimoto, R.
AU - Suzuki, T.
AU - Suzuki, T.
AU - Tagoshi, H.
AU - Takahashi, H.
AU - Takahashi, R.
AU - Takamori, A.
AU - Takano, S.
AU - Takeda, H.
AU - Takeda, M.
AU - Tanaka, H.
AU - Tanaka, K.
AU - Tanaka, K.
AU - Tanaka, T.
AU - Tanaka, T.
AU - Tanioka, S.
AU - Tapia San Martin, E. N.
AU - Telada, S.
AU - Tomaru, T.
AU - Tomigami, Y.
AU - Tomura, T.
AU - Travasso, F.
AU - Trozzo, L.
AU - Tsang, T. T.L.
AU - Tsubono, K.
AU - Tsuchida, S.
AU - Tsuzuki, T.
AU - Tuyenbayev, D.
AU - Uchikata, N.
AU - Uchiyama, T.
AU - Ueda, A.
AU - Uehara, T.
AU - Ueno, K.
AU - Ueshima, G.
AU - Uraguchi, F.
AU - Ushiba, T.
AU - Putten, M. H.P.M.Van
AU - Vocca, H.
AU - Wang, J.
AU - Wu, C. M.
AU - Wu, H. C.
AU - Wu, S. R.
AU - Xu, W. R.
AU - Yamada, T.
AU - Yamamoto, K.
AU - Yamamoto, K.
AU - Yamamoto, T.
AU - Yokogawa, K.
AU - Yokoyama, J.
AU - Yokozawa, T.
AU - Yoshioka, T.
AU - Yuzurihara, H.
AU - Zeidler, S.
AU - Zhao, Y.
AU - Zhu, Z. H.
N1 - Funding Information: This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, the LIGO project, and the Virgo project. Publisher Copyright: © Published under licence by IOP Publishing Ltd.
PY - 2021/4/19
Y1 - 2021/4/19
N2 - Radiative cooling of the thermally isolated system is investigated in KAGRA gravitational wave telescope. KAGRA is a laser interferometer-based detector and main mirrors constituting optical cavities are cool down to 20K to reduce noises caused by the thermal fluctuation. The mirror is suspended with the multi-stage pendulum to isolate any vibration. Therefore, this mirror suspension system has few heat links to reduce vibration injection. Thus, this system is mainly cooled down with thermal radiation. In order to understand the process of radiative cooling of the mirror, we analyzed cooling curve based on mass and specific heat. As a result, it was newly found that a cryogenic part called "cryogenic duct-shield"seems to have large contribution in the beginning of the mirror cooling. This finding will help to design new cooling system for the next generation cryogenic gravitational wave detector.
AB - Radiative cooling of the thermally isolated system is investigated in KAGRA gravitational wave telescope. KAGRA is a laser interferometer-based detector and main mirrors constituting optical cavities are cool down to 20K to reduce noises caused by the thermal fluctuation. The mirror is suspended with the multi-stage pendulum to isolate any vibration. Therefore, this mirror suspension system has few heat links to reduce vibration injection. Thus, this system is mainly cooled down with thermal radiation. In order to understand the process of radiative cooling of the mirror, we analyzed cooling curve based on mass and specific heat. As a result, it was newly found that a cryogenic part called "cryogenic duct-shield"seems to have large contribution in the beginning of the mirror cooling. This finding will help to design new cooling system for the next generation cryogenic gravitational wave detector.
UR - http://www.scopus.com/inward/record.url?scp=85104878570&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1857/1/012002
DO - 10.1088/1742-6596/1857/1/012002
M3 - Conference article
AN - SCOPUS:85104878570
VL - 1857
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
SN - 1742-6588
IS - 1
M1 - 012002
Y2 - 6 January 2020 through 9 January 2020
ER -