Quantum Sensing of Thermoelectric Power in Low-Dimensional Materials

Mali Zhao, Dohyun Kim, Young Hee Lee, Heejun Yang, Suyeon Cho

Research output: Contribution to journalReview articlepeer-review

Abstract

Thermoelectric power, has been extensively studied in low-dimensional materials where quantum confinement and spin textures can largely modulate thermopower generation. In addition to classical and macroscopic values, thermopower also varies locally over a wide range of length scales, and is fundamentally linked to electron wave functions and phonon propagation. Various experimental methods for the quantum sensing of localized thermopower have been suggested, particularly based on scanning probe microscopy. Here, critical advances in the quantum sensing of thermopower are introduced, from the atomic to the several-hundred-nanometer scales, including the unique role of low-dimensionality, defects, spins, and relativistic effects for optimized power generation. Investigating the microscopic nature of thermopower in quantum materials can provide insights useful for the design of advanced materials for future thermoelectric applications. Quantum sensing techniques for thermopower can pave the way to practical and novel energy devices for a sustainable society.

Original languageEnglish
JournalAdvanced Materials
DOIs
StateAccepted/In press - 2022

Keywords

  • low dimensional materials
  • quantum sensing
  • scanning probe microscopy
  • scanning thermoelectric microscopy
  • thermoelectric power

Fingerprint

Dive into the research topics of 'Quantum Sensing of Thermoelectric Power in Low-Dimensional Materials'. Together they form a unique fingerprint.

Cite this