Quantum biological tunnel junction for electron transfer imaging in live cells

Hongbao Xin, Wen Jing Sim, Bumseok Namgung, Yeonho Choi, Baojun Li, Luke P. Lee

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


Quantum biological electron transfer (ET) essentially involves in virtually all important biological processes such as photosynthesis, cellular respiration, DNA repair, cellular homeostasis, and cell death. However, there is no real-time imaging method to capture biological electron tunnelling in live cells to date. Here, we report a quantum biological electron tunnelling (QBET) junction and its application in real-time optical detection of QBET and the dynamics of ET in mitochondrial cytochrome c during cell life and death process. QBET junctions permit to see the behaviours of electron tunnelling through barrier molecules with different barrier widths. Using QBET spectroscopy, we optically capture real-time ET in cytochrome c redox dynamics during cellular apoptosis and necrosis in living cells. The non-invasive real-time QBET spectroscopic imaging of ET in live cell open a new era in life sciences and medicine by providing a way to capture spatiotemporal ET dynamics and to reveal the quantum biological mechanisms.

Original languageEnglish
Article number3245
JournalNature Communications
Issue number1
StatePublished - 1 Dec 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).


Dive into the research topics of 'Quantum biological tunnel junction for electron transfer imaging in live cells'. Together they form a unique fingerprint.

Cite this