Preservation properties of a renewal process stopped at a random dependent time

F. G. Badía, Ji Hwan Cha

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


One of the interesting problems on the stochastic behavior of random recurrent events in a random time interval is to obtain the conditions under which the reliability properties of a random time T are inherited by N(T), where {N(t):t≥0} is a stochastic process. Most of the studies on the topic has been done under the assumption that the random time T and the stochastic process {N(t):t≥0} are stochastically independent. However, in practice, there can be different cases when appropriate dependence structure is more appropriate. In this paper, we study the preservation of a renewal process stopped at a random time when they are stochastically dependent. We discuss the stochastic ordering properties and the preservation of reliability classes for the random counting variables N(T) when the corresponding counting process is a renewal process. Furthermore, we study the preservation of NBUE (NWUE) reliability class when the counting process is a homogeneous Poisson process.

Original languageEnglish
Pages (from-to)163-175
Number of pages13
JournalProbability in the Engineering and Informational Sciences
Issue number2
StatePublished - Apr 2013


Dive into the research topics of 'Preservation properties of a renewal process stopped at a random dependent time'. Together they form a unique fingerprint.

Cite this