TY - JOUR
T1 - Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate
AU - Kyun Kim, Hyun
AU - Kim, Kwangmeyung
AU - Byun, Youngro
N1 - Funding Information:
This study was supported by the National Research Laboratory (NRL) Project from the Ministry of Science and Technology in Korea.
PY - 2005/6
Y1 - 2005/6
N2 - This paper describes a strategy for designing a chemically anchored phospholipid monolayer that could be used as coating materials for biomedical implants. To make a chemically anchored phospholipid monolayer on the polymer substrate, we prepared the mono-acrylated phospholipid (1-palmitoyl-2-[12- (acryloyloxy)-dodecanoyl]-sn-glycero-3-phosphocholine; acryloyl-PC) and the acrylated polymer (poly(octadecylacrylate-co-4-acryloyloxy butylacrylate)), which was synthesized by the acrylation of poly(octadecyl acrylate-co- hydroxybutyl acrylate, poly(OA-co-HA)) with acryloyl chloride. The chemically anchored phospholipid monolayer was prepared by using in situ photopolymerization of a pre-assembled phospholipid monolayer, produced by lipid vesicle fusion, onto the acrylated polymer coated silicon wafer. Optimal condition of vesicle fusion and irradiation time was determined from the degree of hydrophilicity rendered by the polymerized phospholipid surface. The physicochemical properties of polymerized phospholipid monolayer on the substrate were evaluated using water contact angle, field-emission scanning electron micrograph (FE-SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). These results confirmed that the polymerized phospholipid monolayer was chemically anchored on the acrylated polymer substrate. The chemically anchored phospholipid monolayer was stable in aqueous condition for 2 weeks, but the physically adsorbed phospholipid monolayer got removed within 1 day. Moreover, the polymerized phospholipid monolayer also suppressed albumin absorption and platelet adhesion, in vitro. This polymerized phospholipid monolayer provides a new biomimetic system for coating medical devises.
AB - This paper describes a strategy for designing a chemically anchored phospholipid monolayer that could be used as coating materials for biomedical implants. To make a chemically anchored phospholipid monolayer on the polymer substrate, we prepared the mono-acrylated phospholipid (1-palmitoyl-2-[12- (acryloyloxy)-dodecanoyl]-sn-glycero-3-phosphocholine; acryloyl-PC) and the acrylated polymer (poly(octadecylacrylate-co-4-acryloyloxy butylacrylate)), which was synthesized by the acrylation of poly(octadecyl acrylate-co- hydroxybutyl acrylate, poly(OA-co-HA)) with acryloyl chloride. The chemically anchored phospholipid monolayer was prepared by using in situ photopolymerization of a pre-assembled phospholipid monolayer, produced by lipid vesicle fusion, onto the acrylated polymer coated silicon wafer. Optimal condition of vesicle fusion and irradiation time was determined from the degree of hydrophilicity rendered by the polymerized phospholipid surface. The physicochemical properties of polymerized phospholipid monolayer on the substrate were evaluated using water contact angle, field-emission scanning electron micrograph (FE-SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). These results confirmed that the polymerized phospholipid monolayer was chemically anchored on the acrylated polymer substrate. The chemically anchored phospholipid monolayer was stable in aqueous condition for 2 weeks, but the physically adsorbed phospholipid monolayer got removed within 1 day. Moreover, the polymerized phospholipid monolayer also suppressed albumin absorption and platelet adhesion, in vitro. This polymerized phospholipid monolayer provides a new biomimetic system for coating medical devises.
KW - Acrylated polymer substrate
KW - Blood compatibility
KW - In situ photopolymerization
KW - Phospholipid monolayer
UR - http://www.scopus.com/inward/record.url?scp=11144330506&partnerID=8YFLogxK
U2 - 10.1016/j.biomaterials.2004.09.066
DO - 10.1016/j.biomaterials.2004.09.066
M3 - Article
C2 - 15621232
AN - SCOPUS:11144330506
SN - 0142-9612
VL - 26
SP - 3435
EP - 3444
JO - Biomaterials
JF - Biomaterials
IS - 17
ER -