TY - JOUR
T1 - Prediction of human pharmacokinetic parameters incorporating SMILES information
AU - Kwon, Jae Hee
AU - Han, Ja Young
AU - Kim, Minjung
AU - Kim, Seong Kyung
AU - Lee, Dong Kyu
AU - Kim, Myeong Gyu
N1 - Publisher Copyright:
© The Pharmaceutical Society of Korea 2024.
PY - 2024/12
Y1 - 2024/12
N2 - This study aimed to develop a model incorporating natural language processing analysis for the simplified molecular-input line-entry system (SMILES) to predict clearance (CL) and volume of distribution at steady state (Vd,ss) in humans. The construction of CL and Vd,ss prediction models involved data from 435 to 439 compounds, respectively. In machine learning, features such as animal pharmacokinetic data, in vitro experimental data, molecular descriptors, and SMILES were utilized, with XGBoost employed as the algorithm. The ChemBERTa model was used to analyze substance SMILES, and the last hidden layer embedding of ChemBERTa was examined as a feature. The model was evaluated using geometric mean fold error (GMFE), r2, root mean squared error (RMSE), and accuracy within 2- and 3-fold error. The model demonstrated optimal performance for CL prediction when incorporating animal pharmacokinetic data, in vitro experimental data, and SMILES as features, yielding a GMFE of 1.768, an r2 of 0.528, an RMSE of 0.788, with accuracies within 2-fold and 3-fold error reaching 75.8% and 81.8%, respectively. The model's performance in Vd,ss prediction was optimized by leveraging animal pharmacokinetic data and in vitro experimental data as features, yielding a GMFE of 1.401, an r2 of 0.902, an RMSE of 0.413, with accuracies within 2-fold and 3-fold error reaching 93.8% and 100%, respectively. This study has developed a highly predictive model for CL and Vd,ss. Specifically, incorporating SMILES information into the model has predictive power for CL.
AB - This study aimed to develop a model incorporating natural language processing analysis for the simplified molecular-input line-entry system (SMILES) to predict clearance (CL) and volume of distribution at steady state (Vd,ss) in humans. The construction of CL and Vd,ss prediction models involved data from 435 to 439 compounds, respectively. In machine learning, features such as animal pharmacokinetic data, in vitro experimental data, molecular descriptors, and SMILES were utilized, with XGBoost employed as the algorithm. The ChemBERTa model was used to analyze substance SMILES, and the last hidden layer embedding of ChemBERTa was examined as a feature. The model was evaluated using geometric mean fold error (GMFE), r2, root mean squared error (RMSE), and accuracy within 2- and 3-fold error. The model demonstrated optimal performance for CL prediction when incorporating animal pharmacokinetic data, in vitro experimental data, and SMILES as features, yielding a GMFE of 1.768, an r2 of 0.528, an RMSE of 0.788, with accuracies within 2-fold and 3-fold error reaching 75.8% and 81.8%, respectively. The model's performance in Vd,ss prediction was optimized by leveraging animal pharmacokinetic data and in vitro experimental data as features, yielding a GMFE of 1.401, an r2 of 0.902, an RMSE of 0.413, with accuracies within 2-fold and 3-fold error reaching 93.8% and 100%, respectively. This study has developed a highly predictive model for CL and Vd,ss. Specifically, incorporating SMILES information into the model has predictive power for CL.
KW - Clearance
KW - Machine learning
KW - Pharmacokinetics
KW - SMILES
KW - Volume of distribution
UR - http://www.scopus.com/inward/record.url?scp=85210367511&partnerID=8YFLogxK
U2 - 10.1007/s12272-024-01520-2
DO - 10.1007/s12272-024-01520-2
M3 - Article
C2 - 39589671
AN - SCOPUS:85210367511
SN - 0253-6269
VL - 47
SP - 914
EP - 923
JO - Archives of Pharmacal Research
JF - Archives of Pharmacal Research
IS - 12
ER -