TY - JOUR
T1 - Prediction of final pathology depending on preoperative myometrial invasion and grade assessment in low-risk endometrial cancer patients
T2 - A Korean Gynecologic Oncology Group ancillary study
AU - Jang, Dong Hoon
AU - Lee, Hyun Gyu
AU - Lee, Banghyun
AU - Kang, Sokbom
AU - Kim, Jong Hyeok
AU - Kim, Byoung Gie
AU - Kim, Jae Weon
AU - Kim, Moon Hong
AU - Chen, Xiaojun
AU - No, Jae Hong
AU - Lee, Jong Min
AU - Kim, Jae Hoon
AU - Watari, Hidemich
AU - Kim, Seok Mo
AU - Kim, Sung Hoon
AU - Seong, Seok Ju
AU - Jeong, Dae Hoon
AU - Kim, Yun Hwan
N1 - Publisher Copyright:
© 2024 Jang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/6
Y1 - 2024/6
N2 - Objectives Fertility-sparing treatment (FST) might be considered an option for reproductive patients with low-risk endometrial cancer (EC). On the other hand, the matching rates between preoperative assessment and postoperative pathology in low-risk EC patients are not high enough. We aimed to predict the postoperative pathology depending on preoperative myometrial invasion (MI) and grade in low-risk EC patients to help extend the current criteria for FST. Methods/Materials This ancillary study (KGOG 2015S) of Korean Gynecologic Oncology Group 2015, a prospective, multicenter study included patients with no MI or MI <1/2 on preoperative MRI and endometrioid adenocarcinoma and grade 1 or 2 on endometrial biopsy. Among the eligible patients, Groups 1–4 were defined with no MI and grade 1, no MI and grade 2, MI <1/2 and grade 1, and MI <1/2 and grade 2, respectively. New prediction models using machine learning were developed. Results Among 251 eligible patients, Groups 1–4 included 106, 41, 74, and 30 patients, respectively. The new prediction models showed superior prediction values to those from conventional analysis. In the new prediction models, the best NPV, sensitivity, and AUC of preoperative each group to predict postoperative each group were as follows: 87.2%, 71.6%, and 0.732 (Group 1); 97.6%, 78.6%, and 0.656 (Group 2); 71.3%, 78.6% and 0.588 (Group 3); 91.8%, 64.9%, and 0.676% (Group 4). Conclusions In low-risk EC patients, the prediction of postoperative pathology was ineffective, but the new prediction models provided a better prediction.
AB - Objectives Fertility-sparing treatment (FST) might be considered an option for reproductive patients with low-risk endometrial cancer (EC). On the other hand, the matching rates between preoperative assessment and postoperative pathology in low-risk EC patients are not high enough. We aimed to predict the postoperative pathology depending on preoperative myometrial invasion (MI) and grade in low-risk EC patients to help extend the current criteria for FST. Methods/Materials This ancillary study (KGOG 2015S) of Korean Gynecologic Oncology Group 2015, a prospective, multicenter study included patients with no MI or MI <1/2 on preoperative MRI and endometrioid adenocarcinoma and grade 1 or 2 on endometrial biopsy. Among the eligible patients, Groups 1–4 were defined with no MI and grade 1, no MI and grade 2, MI <1/2 and grade 1, and MI <1/2 and grade 2, respectively. New prediction models using machine learning were developed. Results Among 251 eligible patients, Groups 1–4 included 106, 41, 74, and 30 patients, respectively. The new prediction models showed superior prediction values to those from conventional analysis. In the new prediction models, the best NPV, sensitivity, and AUC of preoperative each group to predict postoperative each group were as follows: 87.2%, 71.6%, and 0.732 (Group 1); 97.6%, 78.6%, and 0.656 (Group 2); 71.3%, 78.6% and 0.588 (Group 3); 91.8%, 64.9%, and 0.676% (Group 4). Conclusions In low-risk EC patients, the prediction of postoperative pathology was ineffective, but the new prediction models provided a better prediction.
UR - http://www.scopus.com/inward/record.url?scp=85197196090&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0305360
DO - 10.1371/journal.pone.0305360
M3 - Article
C2 - 38935680
AN - SCOPUS:85197196090
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 6 June
M1 - e0305360
ER -