TY - JOUR
T1 - Prediction of electron energies in metal oxides
AU - Walsh, Aron
AU - Butler, Keith T.
PY - 2014/2/18
Y1 - 2014/2/18
N2 - The ability to predict energy levels in metal oxides is paramount to developinguseful materials, such as in the development of water photolysis catalysts and efficient photovoltaic cells. The binding energy of electrons in materials encompasses a wealth of information concerning their physicochemistry. The energies control the optical and electrical properties, dictating for which kinds of chemistry and physics a particular material is useful. Scientists have developed theories and models for electron energies in a variety of chemical systems over the past century. However, the prediction of quantitative energy levels in new materials remains a major challenge. This issue is of particular importance in metal oxide research, where novel chemistries have opened the possibility of a wide range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells.In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum descriptions, to explore the alignment of electron energies between materials. We present a number of paradigmatic examples, including a series of oxides (ZnO, In 2O3, and Cu2O). Such calculations allow the determination of a "band alignment diagram" between different materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application.Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the strengths and weaknesses of each, emphasizing the difficulties in translating concepts from molecular to solid-state systems.Finally, we stress the need for a universal description of the alignment of band energies for materials design from first-principles. By demonstrating the applicability and challenges of using theory to calculate the relevant quantities, as well as impressing the necessity of a clarification and unification of the descriptions, we hope to provide a stimulus for the continued development of this field.
AB - The ability to predict energy levels in metal oxides is paramount to developinguseful materials, such as in the development of water photolysis catalysts and efficient photovoltaic cells. The binding energy of electrons in materials encompasses a wealth of information concerning their physicochemistry. The energies control the optical and electrical properties, dictating for which kinds of chemistry and physics a particular material is useful. Scientists have developed theories and models for electron energies in a variety of chemical systems over the past century. However, the prediction of quantitative energy levels in new materials remains a major challenge. This issue is of particular importance in metal oxide research, where novel chemistries have opened the possibility of a wide range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells.In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum descriptions, to explore the alignment of electron energies between materials. We present a number of paradigmatic examples, including a series of oxides (ZnO, In 2O3, and Cu2O). Such calculations allow the determination of a "band alignment diagram" between different materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application.Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the strengths and weaknesses of each, emphasizing the difficulties in translating concepts from molecular to solid-state systems.Finally, we stress the need for a universal description of the alignment of band energies for materials design from first-principles. By demonstrating the applicability and challenges of using theory to calculate the relevant quantities, as well as impressing the necessity of a clarification and unification of the descriptions, we hope to provide a stimulus for the continued development of this field.
UR - http://www.scopus.com/inward/record.url?scp=84894262815&partnerID=8YFLogxK
U2 - 10.1021/ar400115x
DO - 10.1021/ar400115x
M3 - Article
AN - SCOPUS:84894262815
SN - 0001-4842
VL - 47
SP - 364
EP - 372
JO - Accounts of Chemical Research
JF - Accounts of Chemical Research
IS - 2
ER -