TY - JOUR
T1 - Population genetic processes affecting the mode of selective sweeps and effective population size in influenza virus H3N2
AU - Kim, Kangchon
AU - Kim, Yuseob
N1 - Funding Information:
This work was supported by a grant of the TEPIK (Transgovernmental Enterprise for Pandemic Influenza in Korea), which is a part of the Korea Healthcare Technology R&D Project by the Ministry of Health and Welfare, Republic of Korea (Grant No: A103001) to Y.K.
Publisher Copyright:
© 2016 The Author(s).
PY - 2016/8/3
Y1 - 2016/8/3
N2 - Background: Human influenza virus A/H3N2 undergoes rapid adaptive evolution in response to host immunity. Positively selected amino acid substitutions have been detected mainly in the hemagglutinin (HA) segment. The genealogical tree of HA sequences sampled over several decades comprises a long trunk and short side branches, which indicates small effective population size. Various studies have reproduced this unique genealogical structure by modeling recurrent positive selection. However, it has not been clearly demonstrated whether recurrent selective sweeps alone can explain the limited level of genetic diversity observed in the HA of H3N2. In addition, the variation-reducing impacts of other evolutionary processes - background selection and complex demography - relative to that of positive selection have never been explicitly evaluated. Results: In this paper, using computer simulation of a viral population evolving under recurrent selective sweeps we demonstrate that positive selection alone, if it occurs at a rate estimated by previous studies, cannot lead to such a small effective population size. Genetic hitchhiking fails to completely wipe out pre-existing variation because soft, rather than hard, selective sweeps prevail under realistic parameters of mutation rate and population size. We find that antigenic-cluster-transition substitutions in HA occur as hard sweeps. This indicates that the effective population size under which those mutations arise must be much smaller than the actual population size due to other evolutionary forces before selective sweeps further reduce it. We thus examine the effects of background selection and metapopulation dynamics in reducing the effective population size, using parameter values that reproduce other aspects of molecular evolution in H3N2. When either process is incorporated in recurrent selective sweep simulation, selective sweeps are mostly hard and the observed level of synonymous diversity is obtained with large census population size. Conclusions: Background selection and metapopulation dynamics have greater variation reducing power than recurrent positive selection under realistic parameters in H3N2. Therefore, these evolutionary processes are likely to play crucial roles in reducing the effective population size of H3N2 viruses and thus explaining the characteristic shape of H3N2 genealogy.
AB - Background: Human influenza virus A/H3N2 undergoes rapid adaptive evolution in response to host immunity. Positively selected amino acid substitutions have been detected mainly in the hemagglutinin (HA) segment. The genealogical tree of HA sequences sampled over several decades comprises a long trunk and short side branches, which indicates small effective population size. Various studies have reproduced this unique genealogical structure by modeling recurrent positive selection. However, it has not been clearly demonstrated whether recurrent selective sweeps alone can explain the limited level of genetic diversity observed in the HA of H3N2. In addition, the variation-reducing impacts of other evolutionary processes - background selection and complex demography - relative to that of positive selection have never been explicitly evaluated. Results: In this paper, using computer simulation of a viral population evolving under recurrent selective sweeps we demonstrate that positive selection alone, if it occurs at a rate estimated by previous studies, cannot lead to such a small effective population size. Genetic hitchhiking fails to completely wipe out pre-existing variation because soft, rather than hard, selective sweeps prevail under realistic parameters of mutation rate and population size. We find that antigenic-cluster-transition substitutions in HA occur as hard sweeps. This indicates that the effective population size under which those mutations arise must be much smaller than the actual population size due to other evolutionary forces before selective sweeps further reduce it. We thus examine the effects of background selection and metapopulation dynamics in reducing the effective population size, using parameter values that reproduce other aspects of molecular evolution in H3N2. When either process is incorporated in recurrent selective sweep simulation, selective sweeps are mostly hard and the observed level of synonymous diversity is obtained with large census population size. Conclusions: Background selection and metapopulation dynamics have greater variation reducing power than recurrent positive selection under realistic parameters in H3N2. Therefore, these evolutionary processes are likely to play crucial roles in reducing the effective population size of H3N2 viruses and thus explaining the characteristic shape of H3N2 genealogy.
KW - Background selection
KW - Influenza virus
KW - Metapopulation
KW - Positive selection
KW - Soft sweep
UR - http://www.scopus.com/inward/record.url?scp=84982705939&partnerID=8YFLogxK
U2 - 10.1186/s12862-016-0727-8
DO - 10.1186/s12862-016-0727-8
M3 - Article
C2 - 27487769
AN - SCOPUS:84982705939
SN - 1471-2148
VL - 16
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 156
ER -