Abstract
The treatment of diseases caused by drug-resistant bacterial infections urgently requires new types of broad-spectrum antimicrobial materials. Herein, we introduce a supramolecular self-assembly, NanoPcN, which realizes the combination of type I photodynamic activity and photothermal effects by modifying zinc(II) phthalocyanine with a 3-(dimethylamino) phenoxy group. Antibacterial experiments demonstrate that this "one-for-two"property endows NanoPcN with excellent antimicrobial efficacy, not only against Gram-positive and Gram-negative bacteria but also against multidrug-resistant bacteria. An ultralow concentration of NanoPcN (50 nM) almost completely inhibited the growth of methicillin-resistant Staphylococcus aureus upon 655 nm laser irradiation (0.5 W/cm2) for 2 min, and the antibacterial effect was significantly stronger than that of the known photosensitizers methylene blue and tetraphenylporphyrin tetrasulfonic acid. Thus, the construction of "one-for-two"materials through a simple molecular structure modification paves a feasible way for the development of effective broad-spectrum antibacterial agents.
Original language | English |
---|---|
Pages (from-to) | 7609-7616 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 14 |
Issue number | 6 |
DOIs | |
State | Published - 16 Feb 2022 |
Bibliographical note
Funding Information:X.L. thanks the National Natural Science Foundation of China (grant no. 22078066). J.Y. thanks the National Research Foundation of Korea funded by the Korean government (MSIP) (no. 2012R1A3A2048814) and the Ministry of Education (2021R1A6A1A10039823). We thank the Korea Institute of Basic Science (Western Seoul) for helping us obtain SEM images using a Hitachi, SU8220 field-emission scanning electron microscope.
Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
Keywords
- multidrug-resistant bacteria
- one-for-two
- photodynamic therapy
- photothermal therapy
- phthalocyanine self-assembly